首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of new highly soluble bispyrrolothiophenes were synthesized from vinyl azides by using transition‐metal‐catalyzed C?H‐bond functionalization. In addition to modifying the substituents present on the end‐pyrrolothiophene moieties, the arene linker in between the two units was also varied. The solution‐state properties and field‐effect‐transistor (FET) electrical behavior of these bispyrrolothiophenes was compared. Our investigations identified that the optical properties and oxidation potential of our compounds were dominated by the pyrrolothiophene unit with a λmax value of approximately 400 nm and oxidation at approximately 1 V. FET devices constructed with thin films of these bispyrrolothiophenes were also fabricated by means of thin‐film solution processing. One of these compounds, a bispyrrolothiophene linked with benzothiodiazole, exhibits a mobility of approximately 0.3 cm2 V?1 s?1 and the Ion/Ioff value is greater than 106.  相似文献   

2.
A series of fused thiophenes composed of fused α‐oligothiophene units as building blocks, end‐capped with either styrene or 1‐pentyl‐4‐vinylbenzene groups, has been synthesized through Stille coupling reactions. The compounds have been fully characterized by means of 1H NMR spectrometry, high‐resolution mass spectrometry, and elemental analysis. The molecules present a transtrans configuration between their double bonds, which has been verified and confirmed by Fourier‐transform infrared spectroscopy and single‐crystal X‐ray diffraction analysis. The X‐ray crystal structures showed π–π overlap and sulfur–sulfur interactions between the adjacent molecules. The decomposition temperatures were all found to be above 300 °C, indicating that compounds of this series possess excellent thermal stability. The fact that no phase transition occurs at low temperature indicates that they should be well‐suited for application in devices. Moreover, they possess low HOMO energy levels, based on cyclic voltammetry measurements, and suitable energy gaps, as determined from their thin‐film UV/Vis spectra. Thin‐film X‐ray diffraction analysis and atomic force microscopy revealed high crystallinity on supporting substrates. In addition, as the substrate temperature has a significant influence on the morphology and the degree of crystallinity, the device performance could be optimized by varying the substrate temperature. These materials were found to exhibit optimal field‐effect performance, with a mobility of 0.17 cm2 V?1 s?1 and an on/off ratio of 105, at a substrate temperature of 70 °C.  相似文献   

3.
4.
5.
Naphthalene diimides have received much attention due to their high electron affinities, high electron mobility, and good thermal and oxidative stability, therefore making them promising candidates for a variety of organic electronic applications. However, π‐extended naphthalene diimides with lower HOMO‐LUMO gaps and higher stability have only been developed recently because of the synthetic difficulties. This account describes recent developments in the structures, synthesis, properties, and applications of π‐extended naphthalene diimides, including pure‐carbon and heterocyclic acene diimides, from our research group.  相似文献   

6.
7.
Simple modification of benzo[h]benz[5,6]acridino[2,1,9,8‐klmna]acridine‐8,16‐dione, an old and almost‐forgotten vat dye, by reduction of its carbonyl groups and subsequent O‐alkylation, yields solution‐processable, electroactive, conjugated compounds of the periazaacene type, suitable for the use in organic electronics. Their electrochemically determined ionization potential and electron affinity of about 5.2 and ?3.2 eV, respectively, are essentially independent of the length of the alkoxyl substituent and in good agreement with DFT calculations. The crystal structure of 8,16‐dioctyloxybenzo[h]benz[5,6]acridino[2,1,9,8‐klmna]acridine ( FC‐8 ), the most promising compound, was solved. It crystallizes in space group P and forms π‐stacked columns held together in the 3D structure by dispersion forces, mainly between interdigitated alkyl chains. Molecules of FC‐8 have a strong tendency to self‐organize in monolayers deposited on a highly oriented pyrolytic graphite surface, as observed by STM. 8,16‐Dialkoxybenzo[h]benz[5,6]acridino[2,1,9,8‐klmna]acridines are highly luminescent, and all have photoluminescence quantum yields of about 80 %. They show efficient electroluminescence, and can be used as guest molecules with a 4,4′‐bis(N‐carbazolyl)‐1,1′‐biphenyl host in guest/host‐type organic light‐emitting diodes. The best fabricated diodes showed a luminance of about 1900 cd m?12, a luminance efficiency of about 3 cd A?1, and external quantum efficiencies exceeding 0.9 %.  相似文献   

8.
9.
Three soluble and stable thienoacene‐fused pentalene derivatives ( 1 – 3 ) with different π‐conjugation lengths were synthesized. X‐ray crystallographic analysis and density functional theory (DFT) calculations revealed their unique geometric and electronic structures due to the interaction between the aromatic thienoacene units and antiaromatic pentalene moiety. As a result, they all possess a small energy gap and show amphoteric redox behaviour. Time dependent (TD) DFT calculations were used to explain their unique electronic absorption spectra. These new compounds exhibited good thermal stability and ordered packing in solid state and thus their applications in organic field‐effect transistors (OFETs) were also investigated. The highest field‐effect hole mobility of 0.016, 0.036 and 0.001 cm2 V?1 s?1 was achieved for solution‐processed thin films of 1 – 3 , respectively.  相似文献   

10.
11.
A series of pyrene/phenanthrene‐fused furan derivatives ( 1 – 8 ) were synthesized by a simple condensation reaction between pyrene‐4,5‐diketone/phenanthrenequinone and substituted phenol/naphthol in the presence of trifluoromethanesulfonic acid in 1,2‐dichlorobenzene heated at reflux. The formed compounds can emit strong blue light in organic solvents. Additionally, the self‐assembly behaviors of two of the compounds ( 3 and 5 ) were studied through re‐precipitation method and the resulting nanostructures were characterized by UV/Vis, fluorescence spectra, and field‐emission scanning electron microscopy (FESEM). The findings showed that the shape and size of compounds 3 and 5 could be tuned by the ratio of THF and hexadecyl trimethyl ammonium bromide (CTAB) solution in water.  相似文献   

12.
A series of electronegative π‐conjugated compounds composed of carbonyl‐bridged bithiazole and alkyl‐substituted dioxocyclopenta[b]thiophene were synthesized as a candidate for solution‐processable n‐type organic semiconductor materials and characterized on the basis of photophysical and electrochemical properties. Cyclic voltammetry measurements showed that the first half‐wave reduction potentials of these compounds are between −0.97 and −1.14 V versus ferrocene/ferrocenium, which corresponds to lowest unoccupied molecular orbital energy levels between −3.83 and −3.66 eV. Thanks to hexyl or dodecyl groups in the molecules, the compounds are sufficiently soluble to realize the fabrication of their thin films through a spin‐coating method. As a result, the prepared organic field‐effect transistors based on these newly developed compounds exhibited n‐channel characteristics not only under vacuum but also in air, and the best field‐effect electron mobility observed under vacuum was 0.011 cm2 V−1 s−1 with an on/off ratio of 108 and a threshold voltage of 16 V.  相似文献   

13.
14.
15.
16.
Orbital promises : Frontier orbital analyses showed that the small λ+ value of 8,17‐di‐n‐hexylbenzo[1,2‐k;4,5‐k′]difluoranthene (DH‐BDF) is owed to the nonbonding character of the BDF framework. The calculated adiabatic ionic potential and hole mobility indicates that this compound is a p‐type air‐stable organic field‐effect transistor, which promises to be a soluble, stable and high‐performance p‐type organic semiconductor.

  相似文献   


17.
The synthesis, self‐assembly, and gelation ability of a series of organogelators based on perylene bisimide (PBI) dyes containing amide groups at imide positions are reported. The synergetic effect of intermolecular hydrogen bonding among the amide functionalities and π–π stacking between the PBI units directs the formation of the self‐assembled structure in solution, which beyond a certain concentration results in gelation. Effects of different peripheral alkyl substituents on the self‐assembly were studied by solvent‐ and temperature‐dependent UV‐visible and circular dichroism (CD) spectroscopy. PBI derivatives containing linear alkyl side chains in the periphery formed H‐type π stacks and red gels, whereas by introducing branched alkyl chains the formation of J‐type π stacks and green gels could be achieved. Sterically demanding substituents, in particular, the 2‐ethylhexyl group completely suppressed the π stacking. Coaggregation studies with H‐ and J‐aggregating chromophores revealed the formation of solely H‐type π stacks containing both precursor molecules at a lower mole fraction of J‐aggregating chromophore. Beyond a critical composition of the two chromophores, mixed H‐aggregate and J‐aggregate were formed simultaneously, which points to a self‐sorting process. The versatility of the gelators is strongly dependent on the length and nature of the peripheral alkyl substituents. CD spectroscopic studies revealed a preferential helicity of the aggregates of PBI building blocks bearing chiral side chains. Even for achiral PBI derivatives, the utilization of chiral solvents such as (R)‐ or (S)‐limonene was effective in preferential population of one‐handed helical fibers. AFM studies revealed the formation of helical fibers from all the present PBI gelators, irrespective of the presence of chiral or achiral side chains. Furthermore, vortex flow was found to be effective in macroscopic orientation of the aggregates as evidenced from the origin of CD signals from aggregates of achiral PBI molecules.  相似文献   

18.
19.
20.
A series of symmetric and asymmetric benzo[c,d]indole‐containing aza boron dipyrromethene (aza‐BODIPY) compounds was synthesized by a titanium tetrachloride‐mediated Schiff‐base formation reaction of commercially available benzo[c,d]indole‐2(1H)‐one and heteroaromatic amines. These aza‐BODIPY analogues show different electronic structures from those of regular aza‐BODIPYs, with hypsochromic shifts of the main absorption compared to their BODIPY counterparts. In addition to the intense fluorescence in solution, asymmetric compounds exhibited solid‐state fluorescence due to significant contribution of the vibronic bands to both absorption and fluorescence as well as reduced fluorescence quenching in the aggregates. Finally, aggregation‐induced emission enhancement, which is rare in BODIPY chromophores, was achieved by introducing a nonconjugated moiety into the core structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号