共查询到20条相似文献,搜索用时 15 毫秒
1.
Dr. Christopher B. Larsen Prof. Dr. Oliver S. Wenger 《Angewandte Chemie (International ed. in English)》2018,57(3):841-845
An electron‐donor‐acceptor‐acceptor (D‐A1‐A2) triad has been developed that provides the first proof‐of‐concept for a photoinitiated molecular circuit. After photoexcitation into an optical charge‐transfer transition between D and A1, subsequent thermal electron‐transfer from A1.? to A2 is followed by geometric rearrangement in the D.+‐A1‐A2.? charge‐separated state to form an ion‐pair contact. This facilitates “forward” charge recombination between A2.? and D.+ to complete the molecular circuit with an estimated quantum efficiency of 4 % in toluene at 298 K. 相似文献
2.
3.
High‐Potential Perfluorinated Phthalocyanine–Fullerene Dyads for Generation of High‐Energy Charge‐Separated States: Formation and Photoinduced Electron‐Transfer Studies 下载免费PDF全文
Dr. Sushanta K. Das Andrew Mahler Prof. Angela K. Wilson Prof. Dr. Francis D'Souza 《Chemphyschem》2014,15(12):2462-2472
High oxidation potential perfluorinated zinc phthalocyanines (ZnFnPcs) are synthesised and their spectroscopic, redox, and light‐induced electron‐transfer properties investigated systematically by forming donor–acceptor dyads through metal–ligand axial coordination of fullerene (C60) derivatives. Absorption and fluorescence spectral studies reveal efficient binding of the pyridine‐ (Py) and phenylimidazole‐functionalised fullerene (C60Im) derivatives to the zinc centre of the FnPcs. The determined binding constants, K, in o‐dichlorobenzene for the 1:1 complexes are in the order of 104 to 105 M ?1; nearly an order of magnitude higher than that observed for the dyad formed from zinc phthalocyanine (ZnPc) lacking fluorine substituents. The geometry and electronic structure of the dyads are determined by using the B3LYP/6‐31G* method. The HOMO and LUMO levels are located on the Pc and C60 entities, respectively; this suggests the formation of ZnFnPc.+–C60Im.? and ZnFnPc.+–C60Py.? (n=0, 8 or 16) intra‐supramolecular charge‐separated states during electron transfer. Electrochemical studies on the ZnPc–C60 dyads enable accurate determination of their oxidation and reduction potentials and the energy of the charge‐separated states. The energy of the charge‐separated state for dyads composed of ZnFnPc is higher than that of normal ZnPc–C60 dyads and reveals their significance in harvesting higher amounts of light energy. Evidence for charge separation in the dyads is secured from femtosecond transient absorption studies in nonpolar toluene. Kinetic evaluation of the cation and anion radical ion peaks reveals ultrafast charge separation and charge recombination in dyads composed of perfluorinated phthalocyanine and fullerene; this implies their significance in solar‐energy harvesting and optoelectronic device building applications. 相似文献
4.
Ultrafast Photoinduced Electron Transfer and Charge Stabilization in Donor–Acceptor Dyads Capable of Harvesting Near‐Infrared Light 下载免费PDF全文
Venugopal Bandi Habtom B. Gobeze Prof. Dr. Francis D'Souza 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(32):11483-11494
To harvest energy from the near‐infrared (near‐IR) and infrared (IR) regions of the electromagnetic spectrum, which constitutes nearly 70 % of the solar radiation, there is a great demand for near‐IR and IR light‐absorbing sensitizers that are capable of undergoing ultrafast photoinduced electron transfer when connected to a suitable electron acceptor. Towards achieving this goal, in the present study, we report multistep syntheses of dyads derived from structurally modified BF2‐chelated azadipyrromethene (ADP; to extend absorption and emission into the near‐IR region) and fullerene as electron‐donor and electron‐acceptor entities, respectively. The newly synthesized dyads were fully characterized based on optical absorbance, fluorescence, geometry optimization, and electrochemical studies. The established energy level diagram revealed the possibility of electron transfer either from the singlet excited near‐IR sensitizer or singlet excited fullerene. Femtosecond and nanosecond transient absorption studies were performed to gather evidence of excited state electron transfer and to evaluate the kinetics of charge separation and charge recombination processes. These studies revealed the occurrence of ultrafast photoinduced electron transfer leading to charge stabilization in the dyads, and populating the triplet states of ADP, benzanulated‐ADP and benzanulated thiophene‐ADP in the respective dyads, and triplet state of C60 in the case of BF2‐chelated dipyrromethene derived dyad during charge recombination. The present findings reveal that these sensitizers are suitable for harvesting light energy from the near‐IR region of the solar spectrum and for building fast‐responding optoelectronic devices operating under near‐IR radiation input. 相似文献
5.
《Chemphyschem》2003,4(12):1299-1307
Two classes of fullerene‐based donor–bridge–acceptor (D–B–A) systems containing donors of varying oxidation potentials have been synthesized. These systems include fullerenes linked to heteroaromatic donor groups (phenothiazine/phenoxazine) as well as substituted anilines (p‐anisidine/p‐toluidine). In contrast to the model compound, an efficient intramolecular electron transfer is observed from the fullerene singlet excited state in polar solvents. An increase in the rate constant and quantum yield of charge separation (kcs and Φcs) has been observed for both classes of dyads, with decrease in the oxidation potentials of the donor groups. This observation indicates that the rates of the forward electron transfer fall in the normal region of the Marcus curve. The long‐lived charge separation enabled the characterization of electron transfer products, namely, the radical cation of the donor and radical anion of the pyrrolidinofullerene, by using nanosecond transient absorption spectroscopy. The small reorganization energy (λ) of C60 coupled with large negative free energy changes (‐ΔG°) for the back electron transfer places the back electron process in the inverted region of Marcus curve, thereby stabilizing the electron transfer products. 相似文献
6.
7.
Man Jae Park Prof. Dr. Mamoru Fujitsuka Prof. Dr. Kiyohiko Kawai Prof. Dr. Tetsuro Majima 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(7):2056-2062
Excess‐electron transfer (EET) in DNA has attracted wide attention owing to its close relation to DNA repair and nanowires. To clarify the dynamics of EET in DNA, a photosensitizing electron donor that can donate an excess electron to a variety of DNA sequences has to be developed. Herein, a terthiophene (3T) derivative was used as the photosensitizing electron donor. From the dyad systems in which 3T was connected to a single nucleobase, it was revealed that 13T* donates an excess electron efficiently to thymine, cytosine, and adenine, despite adenine being a well‐known hole conductor. The free‐energy dependence of the electron‐transfer rate was explained on the basis of the Marcus theory. From the DNA hairpins, it became clear that 13T* can donate an excess electron not only to the adjacent nucleobase but also to the neighbor one nucleobase further along and so on. From the charge‐injection rate, the possibilities of smaller β value and/or charge delocalization were discussed. In addition, EET through consecutive cytosine nucleobases was suggested. 相似文献
8.
Dr. Mohamed E. El‐Khouly Dr. Channa A. Wijesinghe Dr. Vladimir N. Nesterov Prof. Melvin E. Zandler Prof. Shunichi Fukuzumi Prof. Francis D'Souza 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(43):13844-13853
New multi‐modular donor–acceptor conjugates featuring zinc porphyrin (ZnP), catechol‐chelated boron dipyrrin (BDP), triphenylamine (TPA) and fullerene (C60), or naphthalenediimide (NDI) have been newly designed and synthesized as photosynthetic antenna and reaction‐center mimics. The X‐ray structure of triphenylamine‐BDP is also reported. The wide‐band capturing polyad revealed ultrafast energy‐transfer (kENT=1.0×1012 s?1) from the singlet excited BDP to the covalently linked ZnP owing to close proximity and favorable orientation of the entities. Introducing either fullerene or naphthalenediimide electron acceptors to the TPA‐BDP‐ZnP triad through metal–ligand axial coordination resulted in electron donor–acceptor polyads whose structures were revealed by spectroscopic, electrochemical and computational studies. Excitation of the electron donor, zinc porphyrin resulted in rapid electron‐transfer to coordinated fullerene or naphthalenediimide yielding charge separated ion‐pair species. The measured electron transfer rate constants from femtosecond transient spectral technique in non‐polar toluene were in the range of 5.0×109–3.5×1010 s?1. Stabilization of the charge‐separated state in these multi‐modular donor–acceptor polyads is also observed to certain level. 相似文献
9.
《Angewandte Chemie (International ed. in English)》2018,57(22):6696-6700
The distance dependence of electron transfer (ET) is commonly investigated in linear rigid rod‐like compounds, but studies of molecular wires with integrated corners imposing 90° angles are very rare. By using spirobifluorene as a key bridging element and by substituting it at different positions, two isomeric series of donor‐bridge‐acceptor compounds with either nearly linear or angled geometries were obtained. Photoinduced ET in both series is dominated by rapid through‐bond hole hopping across oligofluorene bridges over distances of up to 70 Å. Despite considerable conformational flexibility, direct through‐space and through‐solvent ET is negligible even in the angled series. The independence of the ET rate constant on the total number of fluorene units in the angled series is attributed to a rate‐limiting tunneling step through the spirobifluorene corner. This finding is relevant for multidimensional ET systems and grids in which individual molecular wires are interlinked at 90° angles. 相似文献
10.
Margherita Orazietti Dr. Martin Kuss‐Petermann Prof. Dr. Peter Hamm Prof. Dr. Oliver S. Wenger 《Angewandte Chemie (International ed. in English)》2016,55(32):9407-9410
Accumulation and temporary storage of redox equivalents with visible light as an energy input is of pivotal importance for artificial photosynthesis because key reactions, such as CO2 reduction or water oxidation, require the transfer of multiple redox equivalents. We report on the first purely molecular system, in which a long‐lived charge‐separated state (τ≈870 ns) with two electrons accumulated on a suitable acceptor unit can be observed after excitation with visible light. Importantly, no sacrificial reagents were employed. 相似文献
11.
Synthesis,Aromaticity and Photophysical Behaviour of Ferrocene‐ and Ruthenocene‐Appended Semisynthetic Chlorin Derivatives 下载免费PDF全文
Taru Nikkonen Dr. María Moreno Oliva Dr. Stefan Taubert Dr. Michele Melchionna Dr. Axel Kahnt Dr. Juho Helaja 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(36):12755-12768
Two novel synthetic strategies to covalently link a metallocene electron‐donor unit to a chlorin ring are presented. In one approach, pyropheophorbide a is readily converted into its 131‐ferrocenyl dehydro derivative by nucleophilic addition of the ferrocenyl anion to the 131‐carbonyl group. In another approach, the corresponding 131‐pentamethylruthenocenyl derivative is synthesised from 131‐fulvenylchlorin by a facile ligand exchange/deprotonation reaction with the [RuCp*(cod)Cl] (Cp*=pentamethylcyclopentadienyl; cod=1,5‐cyclooctadiene) complex. The resulting metallocene–chlorins exhibit reduced aromaticity, which was unequivocally supported by ring‐current calculations based on the gauge‐including magnetically induced current (GIMIC) method and by calculated nucleus‐independent chemical shift (NICS) values. The negative ring current in the isocyclic E ring suggests the antiaromatic character of this moiety and also clarifies the spontaneous reactivity of the complexes with oxygen. The oxidation products were isolated and their electrochemical and photophysical properties were studied. The ruthenocene derivatives turned out to be stable under light irradiation and showed photoinduced charge transfer with charge‐separation lifetimes of 152–1029 ps. 相似文献
12.
Dr. Jian‐Yong Liu Dr. Mohamed E. El‐Khouly Prof. Shunichi Fukuzumi Prof. Dennis K. ;P. Ng 《化学:亚洲杂志》2011,6(1):174-179
A novel distyryl BODIPY–fullerene dyad is prepared. Upon excitation at the distyryl BODIPY moiety, the dyad undergoes photoinduced electron transfer to give a charge‐separated state with lifetimes of 476 ps and 730 ps in polar (benzonitrile) and nonpolar (toluene) solvents, respectively. Transient absorption measurements show the formation of the triplet excited state of distyryl BODIPY in the dyad, which is populated from charge‐recombination processes in both solvents. 相似文献
13.
Shanmugam Easwaramoorthi Dr. Jae‐Yoon Shin Sung Cho Dr. Pyosang Kim Yasuhide Inokuma Eiji Tsurumaki Atsuhiro Osuka Prof. Dr. Dongho Kim Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(44):12005-12017
Donor–acceptor systems based on subporphyrins with nitro and amino substituents at meta and para positions of the meso‐phenyl groups were synthesized and their photophysical properties have been systematically investigated. These molecules show two types of charge‐transfer interactions, that is, from center to periphery and periphery to center depending on the peripheral substitution, in which the subporphyrin moiety plays a dual role as both donor and acceptor. Based on the solvent‐polarity‐dependent photophysical properties, we have shown that the fluorescence emission of para isomers originates from the solvatochromic, dipolar, symmetry‐broken, and relaxed excited states, whereas the non‐solvatochromic fluorescence of meta isomers is of the octupolar type with false symmetry breaking. The restricted meso‐(4‐aminophenyl) rotation at low temperature prevents the intramolecular charge‐transfer (ICT)‐forming process. The two‐photon absorption (TPA) cross‐section values were determined by photoexcitation at 800 nm in nonpolar toluene and polar acetonitrile solvents to see the effect of ICT on the TPA processes. The large enhancement in the TPA cross‐section value of approximately 3200 GM (1 GM=10?50 cm4 s photon?1) with donor–acceptor substitution has been attributed to the octupolar effect and ICT interactions. A correlation was found between the electron‐donating/‐withdrawing abilities of the peripheral groups and the TPA cross‐section values, that is, p‐aminophenyl>m‐aminophenyl>nitrophenyl. The increased stability of octupolar ICT interactions in highly polar solvents enhances the TPA cross‐section value by a factor of approximately 2 and 4, respectively, for p‐amino‐ and m‐nitrophenyl‐substituted subporphyrins. On the other hand, the stabilization of the symmetry‐broken, dipolar ICT state gives rise to a negligible impact on the TPA processes. 相似文献
14.
Photoinduced Electron Transfer within a Zinc Porphyrin–Cyclobis(paraquat‐p‐phenylene) Donor–Acceptor Dyad 下载免费PDF全文
Dr. Maher Fathalla Dr. Jonathan C. Barnes Prof. Ryan M. Young Dr. Karel J. Hartlieb Scott M. Dyar Samuel W. Eaton Dr. Amy A. Sarjeant Prof. Dick T. Co Prof. Michael R. Wasielewski Prof. J. Fraser Stoddart 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(45):14690-14697
Understanding the mechanism of efficient photoinduced electron‐transfer processes is essential for developing molecular systems for artificial photosynthesis. Towards this goal, we describe the synthesis of a donor–acceptor dyad comprising a zinc porphyrin donor and a tetracationic cyclobis(paraquat‐p‐phenylene) (CBPQT4+) acceptor. The X‐ray crystal structure of the dyad reveals the formation of a dimeric motif through the intermolecular coordination between the triazole nitrogen and the central Zn metal of two adjacent units of the dyad. Photoinduced electron transfer within the dyad in MeCN was investigated by femtosecond and nanosecond transient absorption spectroscopy, as well as by transient EPR spectroscopy. Photoexcitation of the dyad produced a weakly coupled ZnP+.–CBPQT3+. spin‐correlated radical‐ion pair having a τ=146 ns lifetime and a spin–spin exchange interaction of only 0.23 mT. The long radical‐ion‐pair lifetime results from weak donor–acceptor electronic coupling as a consequence of having nine bonds between the donor and the acceptor, and the reduction in reorganization energy for electron transfer caused by charge dispersal over both paraquat units within CBPQT3+.. 相似文献
15.
Rohan J. Kumar Dr. Susanne Karlsson Daniel Streich Alice Rolandini Jensen Michael Jäger Dr. Hans‐Christian Becker Dr. Jonas Bergquist Prof. Olof Johansson Dr. Leif Hammarström Prof. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2010,16(9):2830-2842
The first examples of rodlike donor–photosensitizer–acceptor arrays based on bis‐2,6‐di(quinolin‐8‐yl)pyridine RuII complexes 1 a and 3 a for photoinduced electron transfer have been synthesized and investigated. The complexes are synthesized in a convergent manner and are isolated as linear, single isomers. Time‐resolved absorption spectroscopy reveals long‐lived, photoinduced charge‐separated states (τCSS ( 1 a )=140 ns, τCSS ( 3 a )=200 ns) formed by stepwise electron transfer. The overall yields of charge separation (≥50 % for complex 1 a and ≥95 % for complex 3 a ) are unprecedented for bis‐tridentate RuII polypyridyl complexes. This is attributed to the long‐lived excited state of the [Ru(dqp)2]2+ complex combined with fast electron transfer from the donor moiety following the initial charge separation. The rodlike arrangement of donor and acceptor gives controlled, vectorial electron transfer, free from the complications of stereoisomeric diversity. Thus, such arrays provide an excellent system for the study of photoinduced electron transfer and, ultimately, the harvesting of solar energy. 相似文献
16.
Eva Wöß Dr. Uwe Monkowius Prof. Dr. Günther Knör 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(4):1489-1495
The heteroaromatic polynitrile compound tetracyanopyridine (TCNPy) is introduced as a new electron acceptor for the formation of deeply colored charge‐transfer complexes. In MeCN, TCNPy is characterized by a quasireversible one‐electron‐reduction process at ?0.51 V (versus SCE). The tetracyanopyridine radical anion undergoes a secondary chemical reaction, which is assigned to a protonation step. TCNPy has been demonstrated to generate 1:1 complexes with various electron donors, including tetrathiafulvalene (TTF) and dihydroxybenzene derivatives, such as p‐hydroquinone and catechol. Visible‐ or NIR‐light‐induced excitation of the intense charge‐transfer bands of these compounds leads to a direct optical electron‐transfer process for the formation of the corresponding radical‐ion pairs. The presence of available electron donors that contain protic groups in close proximity to the TCNPy acceptor site opens up a new strategy for the photocontrolled generation of pyridinium radicals in a stepwise proton‐coupled electron‐transfer (PCET) sequence. 相似文献
17.
Marek B. Majewski Dr. Norma R. de Tacconi Prof. Frederick M. MacDonnell Prof. Michael O. Wolf 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(25):8331-8341
RuII complexes incorporating both amide‐linked bithiophene donor ancillary ligands and laminate acceptor ligands; dipyrido[3,2‐a:2′,3′‐c]phenazine (dppz), tetrapyrido[3,2‐a:2′,3′‐c:3′′,2′′‐h:2′′′,3′′′‐j]phenazine (tpphz), and 9,11,20,22‐tetraazatetrapyrido[3,2‐a:2′,3′‐c:3′′,2′′‐l:2′′′,3′′′]‐pentacene (tatpp) exhibit long‐lived charge separated (CS) states, which have been analyzed using time‐resolved transient absorption (TA), fluorescence, and electronic absorption spectroscopy in addition to ground state electrochemical and spectroelectrochemical measurements. These complexes possess two electronically relevant 3MLCT states related to electron occupation of MOs localized predominantly on the proximal “bpy‐like” portion and central (or distal) “phenazine‐like” portion of the acceptor ligand as well as energetically similar 3LC and 3ILCT states. The unusually long excited state lifetimes (τ up to 7 μs) observed in these complexes reflect an equilibration of the 3MLCTprox or 3MLCTdist states with additional triplet states, including a 3LC state and a 3ILCT state that formally localizes a hole on the bithiophene moiety and an electron on the laminate acceptor ligand. Coordination of a ZnII ion to the open coordination site of the laminate acceptor ligand is observed to significantly lower the energy of the 3MLCTdist state by decreasing the magnitude of the excited state dipole and resulting in much shorter excited state lifetimes. The presence of the bithiophene donor group is reported to substantially extend the lifetime of these Zn adducts via formation of a 3ILCT state that can equilibrate with the 3MLCTdist state. In tpphz complexes, ZnII coordination can reorder the energy of the 3MLCTprox and 3MLCTdist states such that there is a distinct switch from one state to the other. The net result is a series of complexes that are capable of forming CS states with electron–hole spatial separation of up to 14 Å and possess exceptionally long lifetimes by equilibration with other triplet states. 相似文献
18.
Prof. Dr. Lothar Weber Jan Kahlert Dr. Regina Brockhinke Lena Böhling Dr. Andreas Brockhinke Dr. Hans‐Georg Stammler Beate Neumann Rachel A. Harder Dr. Mark A. Fox 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(27):8347-8357
Seven derivatives of 1,2‐dicarbadodecaborane (ortho‐carborane, 1,2‐C2B10H12) with a 1,3‐diethyl‐ or 1,3‐diphenyl‐1,3,2‐benzodiazaborolyl group on one cage carbon atom were synthesized and structurally characterized. Six of these compounds showed remarkable low‐energy fluorescence emissions with large Stokes shifts of 15100–20260 cm?1 and quantum yields (ΦF) of up to 65 % in the solid state. The low‐energy fluorescence emission, which was assigned to a charge‐transfer (CT) transition between the cage and the heterocyclic unit, depended on the orientation (torsion angle, ψ) of the diazaborolyl group with respect to the cage C? C bond. In cyclohexane, two compounds exhibited very weak dual fluorescence emissions with Stokes shifts of 15660–18090 cm?1 for the CT bands and 1960–5540 cm?1 for the high‐energy bands, which were assigned to local transitions within the benzodiazaborole units (local excitation, LE), whereas four compounds showed only CT bands with ΦF values between 8–32 %. Two distinct excited singlet‐state (S1) geometries, denoted S1(LE) and S1(CT), were observed computationally for the benzodiazaborolyl‐ortho‐carboranes, the population of which depended on their orientation (ψ). TD‐DFT calculations on these excited state geometries were in accord with their CT and LE emissions. These C‐diazaborolyl‐ortho‐carboranes were viewed as donor–acceptor systems with the diazaborolyl group as the donor and the ortho‐carboranyl group as the acceptor. 相似文献
19.
Dr. Thomas Ehrenschwender Dr. Wolfgang Schmucker Christian Wellner Dipl.‐Chem. Timo Augenstein Dr. Patrick Carl Dr. Jeffrey Harmer Prof. Dr. Frank Breher Prof. Dr. Hans‐Achim Wagenknecht 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(37):12547-12552
A new C‐nucleoside structurally based on the hydroxyquinoline ligand was synthesized that is able to form stable pairs in DNA in both the absence and the presence of metal ions. The interactions between the metal centers in adjacent CuII‐mediated base pairs in DNA were probed by electron paramagnetic resonance (EPR) spectroscopy. The metal–metal distance falls into the range of previously reported values. Fluorescence studies with a donor–DNA–acceptor system indicate that photoinduced charge‐transfer processes across these metal‐ion‐mediated base pairs in DNA occur more efficiently than over natural base pairs. 相似文献