首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydride complexes Mo,W(CO)(NO)H(mer‐etpip) (iPr2PCH2CH2)2PPh=etpip) ( 2 a,b(syn) , syn and anti of NO and Ph(etpip) orientions) were prepared and probed in imine hydrogenations together with co‐catalytic [H(Et2O)2][B(C6F5)4] (140 °C, 60 bar H2). 2 a,b(syn) were obtained via reduction of syn/anti‐Mo,W(NO)Cl3(mer‐etpip) and syn,anti‐Mo,W(NO)(CO)Cl(mer‐etpip). [H(Et2O)2][B(C6F5)4] in THF converted the hydrides into THF complexes syn‐[Mo,W(NO)(CO)(etpip)(THF)][B(C6F5)4]. Combinations of the p‐substituents of aryl imines p‐R1C6H4CH=N‐p‐C6H4R2 (R1,R2=H,F,Cl,OMe,α‐Np) were hydrogenated to amines (maximum initial TOFs of 1960 h?1 ( 2 a(syn) ) and 740 h?1 ( 2 b(syn) ) for N‐(4‐methoxybenzylidene)aniline). An ‘ionic hydrogenation’ mechanism based on linear Hammett plots (ρ=?10.5, p‐substitution on the C‐side and ρ=0.86, p‐substitution on the N‐side), iminium intermediates, linear P(H2) dependence, and DKIE=1.38 is proposed. Heterolytic splitting of H2 followed by ‘proton before hydride’ transfers are the steps in the ionic mechanism where H2 ligand addition is rate limiting.  相似文献   

2.
The reactions of [M(NO)(CO)4(ClAlCl3)] (M=Mo, W) with (iPr2PCH2CH2)2NH, (PNHP) at 90 °C afforded [M(NO)(CO)(PNHP)Cl] complexes (M=Mo, 1a ; W, 1b ). The treatment of compound 1a with KOtBu as a base at room temperature yielded the alkoxide complex [Mo(NO)(CO)(PNHP)(OtBu)] ( 2a ). In contrast, with the amide base Na[N(SiMe3)2], the PNHP ligand moieties in compounds 1a and 1b could be deprotonated at room temperature, thereby inducing dehydrochlorination into amido complexes [M(NO)(CO)(PNP)] (M=Mo, 3a ; W, 3b ; PNP=(iPr2PCH2CH2)2N)). Compounds 3a and 3b have pseudo‐trigonal‐bipyramidal geometries, in which the amido nitrogen atom is in the equatorial plane. At room temperature, compounds 3a and 3b were capable of adding dihydrogen, with heterolytic splitting, thereby forming pairs of isomeric amine‐hydride complexes [Mo(NO)(CO)H(PNHP)] ( 4a(cis) and 4a(trans) ) and [W(NO)(CO)H(PNHP)] ( 4b(cis) and 4b(trans) ; cis and trans correspond to the position of the H and NO groups). H2 approaches the Mo/W?N bond in compounds 3a , 3b from either the CO‐ligand side or from the NO‐ligand side. Compounds 4a(cis) and 4a(trans) were only found to be stable under a H2 atmosphere and could not be isolated. At 140 °C and 60 bar H2, compounds 3a and 3b catalyzed the hydrogenation of imines, thereby showing maximum turnover frequencies (TOFs) of 2912 and 1120 h?1, respectively, for the hydrogenation of N‐(4 ‐ methoxybenzylidene)aniline. A Hammett plot for various para‐substituted imines revealed linear correlations with a negative slope of ?3.69 for para substitution on the benzylidene side and a positive slope of 0.68 for para substitution on the aniline side. Kinetics analysis revealed the initial rate of the hydrogenation reactions to be first order in c(cat.) and zeroth order in c(imine). Deuterium kinetic isotope effect (DKIE) experiments furnished a low kH/kD value (1.28), which supported a Noyori‐type metal–ligand bifunctional mechanism with H2 addition as the rate‐limiting step.  相似文献   

3.
一氧化氮具有电子给予体和受体的双重性质,在过渡金属配合物中亚硝酰基以线型或弯曲型端基,桥式或面桥式配基配位,很早便引起了结构化学家的注意。这些不同的键合模式影响亚硝酰基的反应能力,它可与亲电试剂如质子酸或路易斯酸反应,也可以与亲核试剂如碳阴离子反应。可以作为氧源与 CO 发生氧化还原反应减少内燃机废气污染,也可以与有机配体发生分子内插入反应,形成新的碳氮  相似文献   

4.
Designing supported alkene metathesis catalysts with high activity and stability is still a challenge, despite significant advances in the last years. Described herein is the combination of strong σ‐donating N‐heterocyclic carbene ligands with weak σ‐donating surface silanolates and cationic tungsten sites leading to highly active and stable alkene metathesis catalysts. These well‐defined silica‐supported catalysts, [(≡SiO)W(=O)(=CHCMe2Ph)(IMes)(OTf)] and [(≡SiO)W(=O)(=CHCMe2Ph)(IMes)+][B(ArF)4?] [IMes=1,3‐bis(2,4,6‐trimethylphenyl)‐imidazol‐2‐ylidene, B(ArF)4=B(3,5‐(CF3)2C6H3)4] catalyze alkene metathesis, and the cationic species display unprecedented activity for a broad range of substrates, especially for terminal olefins with turnover numbers above 1.2 million for propene.  相似文献   

5.
A facile synthesis based on the addition of ascorbic acid to a mixture of Na2PdCl4, K2PtCl6, and Pluronic P123 results in highly branched core–shell nanoparticles (NPs) with a micro–mesoporous dandelion‐like morphology comprising Pd core and Pt shell. The slow reduction kinetics associated with the use of ascorbic acid as a weak reductant and suitable Pd/Pt atomic ratio (1:1) play a principal role in the formation mechanism of such branched Pd@Pt core–shell NPs, which differs from the traditional seed‐mediated growth. The catalyst efficiently achieves the reduction of a variety of olefins in good to excellent yields. Importantly, higher catalytic efficiency of dandelion‐like Pd@Pt core–shell NPs was observed for the olefin reduction than commercially available Pt black, Pd NPs, and physically admixed Pt black and Pd NPs. This superior catalytic behavior is not only due to larger surface area and synergistic effects but also to the unique micro–mesoporous structure with significant contribution of mesopores with sizes of several tens of nanometers.  相似文献   

6.
We present the synthesis and characterization of disila‐ and distanna ansa half‐sandwich complexes of Group 6 transition metals. These compounds exhibit high ring strain within the ansa bridge, which is the key factor for the insertion of elemental chalcogens.  相似文献   

7.
Alkyne metathesis catalysts composed of molybdenum(VI) propylidyne and multidentate tris(2‐hydroxylbenzyl)methane ligands have been developed, which exhibit excellent stability (remains active in solution for months at room temperature), high activity, and broad functional‐group tolerance. The homodimerization and cyclooligomerization of monopropynyl or dipropynyl substrates, including challenging heterocycle substrates (e.g., pyridine), proceed efficiently at 40–55 °C in a closed system. The ligand structure and catalytic activity relationship has been investigated, which shows that the ortho groups of the multidentate phenol ligands are critical to the stability and activity of such a catalyst system.  相似文献   

8.
9.
Mn and Na additives have been widely studied to improve the efficiency of CO2 hydrogenation to valuable olefins on Fe catalysts, but their effects on the catalytic properties and mechanism are still under vigorous debate. This study shows that Fe-based catalysts with moderate Mn and Na contents are highly selective for CO2 hydrogenation to olefins, together with low selectivities for both CO and CH4 and much improved space-time olefin yields compared to state-of-the-art catalysts. Combined kinetic assessment and quasi in situ characterizations further unveil that the sole presence of Mn suppresses the activity of Fe catalysts because of the close contact between Fe and Mn, whereas the introduction of Na mediates the Fe–Mn interaction and provides strong basic sites. This subtle synergy between Na and Mn sheds light on the importance of the interplay of multiple additives that could bring an enabling strategy to improve catalytic activity and selectivity.  相似文献   

10.
钼、钨系过氧化物是非常重要的Sharpless烯烃环氧化催化剂,有着非常广泛的工业发展前景。本文综述了钼、钨系过氧化物的种类,结构,合成方法及催化活性,分析了各种钼、钨系过氧化物的特点以及在催化环氧化领域的发展现状。同时,本文还讨论了钼、钨系过氧化物催化烯烃环氧化反应的机理。评述了在催化环氧化领域中两种主要理论——Mimoun机理与Sharpless机理的争论焦点及发展现状,以及计算化学对两种理论中间过渡态的研究进展,并且重点分析了Sharpless机理的过渡态结构。此外,本文还综述了影响钼、钨系过氧化物催化剂反应活性的各种因素以及质子所产生的副反应。最后,本文对应用于催化环氧化领域的钼、钨系过氧化物未来的研究方向提出了建议。  相似文献   

11.
The replacement of platinum with non‐precious‐metal electrocatalysts with high efficiency and superior stability for the hydrogen‐evolution reaction (HER) remains a great challenge. Herein, we report the one‐step synthesis of uniform, ultrafine molybdenum carbide (Mo2C) nanoparticles (NPs) within a carbon matrix from inexpensive starting materials (dicyanamide and ammonium molybdate). The optimized catalyst consisting of Mo2C NPs with sizes lower than 3 nm encapsulated by ultrathin graphene shells (ca. 1–3 layers) showed superior HER activity in acidic media, with a very low onset potential of ?6 mV, a small Tafel slope of 41 mV dec?1, and a large exchange current density of 0.179 mA cm?2, as well as good stability during operation for 12 h. These excellent properties are similar to those of state‐of‐the‐art 20 % Pt/C and make the catalyst one of the most active acid‐stable electrocatalysts ever reported for HER.  相似文献   

12.
加权最小二乘光度法同时测定钨和钼   总被引:5,自引:3,他引:5  
痕量钨和钼与芦丁在混合表面活生剂(CTMAB+Brij-35)存在下,于pH5.4HAC-NaAc介质中产生灵敏的显色反应,所形成的胶束配合物的吸收峰严重重叠。用加权最小二乘法成功地同时测定了混合样中的两组分。  相似文献   

13.
14.
1,2,3‐Triazolylidene‐based mesoionic carbene boranes have been synthesized in a convenient one‐pot protocol from the corresponding 1,2,3‐triazolium salts, base, and borane. Borenium ions are obtained by hydride abstraction and serve as catalysts in mild hydrogenation reactions of imines and unsaturated N‐heterocycles at ambient pressure and temperature.  相似文献   

15.
16.
17.
A series of M(II) and M(IV) (M=Mo, W) alkyne adducts employing two 6-methylpyridine-2-thiolate (6-MePyS) ligands was synthesized and investigated towards the nucleophilic attack of PMe3 on the coordinated alkynes. For this approach, 2-butyne (C2Me2), phenylacetylene (HC2Ph), and diphenylacetylene (C2Ph2) were used. For the exploration of an intramolecular attack, but-3-yn-1-ol (HCCCH2CH2OH) was coordinated to the metal centers. A nucleophilic attack of PMe3 was observed in [W(CO)(HC2Ph)(6-MePyS)2] yielding an η2-vinyl compound. Reaction of [W(CO)(C2Ph2)(6-MePyS)2] with excess PMe3 resulted in the selective coordination of one molecule of PMe3 concomitant with decoordination of the nitrogen atom of one 6-MePyS ligand. In contrast, the W(IV) complexes did not react with PMe3. While no selectivity was observed in the reaction of the Mo(II) compounds with PMe3, alkynes in the Mo(IV) compounds were replaced by PMe3. Addition of Et3N to the but-3-yn-1-ol complexes did not lead to the anticipated formation of 2,3-dihydrofuran.  相似文献   

18.
3,3′,5,5′-Tetra-tert-butyl-2′-sulfanyl[1,1′-biphenyl]-2-ol (H2[tBu4OS]) was prepared in 24 % yield overall from the analogous biphenol using standard techniques. Addition of H2[tBu4OS] to Mo(NAr)(CHCMe2Ph)(2,5-dimethylpyrrolide)2 led to formation of Mo(NAr)(CHCMe2Ph)[tBu4OS], which was trapped with PMe3 to give Mo(NAr)(CHCMe2Ph)[tBu4OS](PMe3) ( 1 (PMe3)). An X-ray crystallographic study of 1 (PMe3) revealed that two structurally distinct square pyramidal molecules are present in which the alkylidene ligand occupies the apical position in each. Both 1 (PMe3)A and 1 (PMe3)B are disordered. Mo(NAd)(CHCMe2Ph)(tBu4OS)(PMe3) ( 2 (PMe3); Ad=1-adamantyl) and W(NAr)(CHCMe2Ph)(tBu4OS)(PMe3) ( 3 (PMe3)) were prepared using analogous approaches. 1 (PMe3) reacts with ethylene (1 atm) in benzene within 45 minutes to give an ethylene complex Mo(NAr)(tBu4OS)(C2H4) ( 4 ) that is isolable and relatively stable toward loss of ethylene below 60 °C. An X-ray study shows that the bond distances and angles for the ethylene ligand in 4 are like those found for bisalkoxide ethylene complexes of the same general type. Complex 1 (PMe3) in the presence of one equivalent of B(C6F5)3 catalyzes the homocoupling of 1-decene, allyltrimethylsilane, and allylboronic acid pinacol ester at ambient temperature. 1 (PMe3), 2 (PMe3), and 3 (PMe3) all catalyze the ROMP of rac-endo,exo-5,6-dicarbomethoxynorbornene (rac-DCMNBE) in the presence of B(C6F5)3, but the polyDCMNBE that is formed has a random structure.  相似文献   

19.
The reaction of three types of carbon nanofibers (CNFs; platelet: CNF‐P, tubular: CNF‐T, herringbone: CNF‐H) with [Ru3(CO)12] in toluene heated at reflux provided the corresponding CNF‐supported ruthenium nanoparticles, Ru/CNFs (Ru content=1.1–3.8 wt %). TEM studies of these Ru/CNFs revealed that size‐controlled Ru nanoparticles (2–4 nm) exist on the CNFs, and that their location was dependent on the surface nanostructures of the CNFs: on the edge of the graphite layers (CNF‐P), in the tubes and on the surface (CNF‐T), and between the layers and on the edge (CNF‐H). Among these Ru/CNFs, Ru/CNF‐P showed excellent catalytic activity towards hydrogenation of toluene with high reproducibility; the reaction proceeded without leaching of the Ru species, and the catalyst was reusable. The total turnover number of the five recycling experiments for toluene hydrogenation reached over 180 000 (mol toluene) (mol Ru)?1. Ru/CNF‐P was also effective for the hydrogenation of functionalized benzene derivatives and pyridine. Hydrogenolysis of benzylic C? O and C? N bonds has not yet been observed. Use of poly(ethylene glycol)s (PEGs) as a solvent made possible the biphasic catalytic hydrogenation of toluene. After the reaction, the methylcyclohexane formed was separated by decantation without contamination of the ruthenium species and PEG. The insoluble PEG phase containing all of the Ru/CNF was recoverable and reusable as the catalyst without loss of activity.  相似文献   

20.
New clustomesogens (i.e., metal atom clusters containing liquid crystalline (LC) materials) have been obtained by grafting neutral cyanobiphenyl (CB)‐ or cholesteryl‐containing tailor‐made dendritic mesomorphic triphenylphosphine oxide ligands on luminescent (M6Cli8)4+ octahedral cluster cores (M=Mo, W). The LC properties were studied by a combination of polarizing optical microscopy (POM), differential scanning calorimetry (DSC), and X‐ray powder diffraction analyses. While the organic ligands showed various mesophase types ranging from nematic, SmA columnar (SmACol), SmA, and SmC phases, it turned out that the corresponding clustomesogens formed layered phases (SmA) over a wide range of temperatures that depend on the nature and density of mesogenic groups employed. Intrinsic luminescence properties of the cluster precursors are preserved over the entire range of LC phase existence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号