首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 194 毫秒
1.
Summary Complexes having the chemical compositions [VO(Habth)2SO4], [M(Habth)2Cl2] [M=CoII, NiII, CuII or ZnII) and [M(abth)2] [M=VIVO, CoII, NiII, CuII or ZnII) and Habth=2-aminobenzophenone-2-thenoylhydrazone] have been prepared and characterized. The complexes are non-electrolytes. Magnetic moments and electronic, photoacoustic, e.s.r. and i.r. spectra of the complexes are used to establish the stereochemistry and mode of bonding of the hydrazone.  相似文献   

2.
Summary 2-Aminoacetophenone-2-thenoylhydrazone, Haath, C4H3SC(O)NHN=C(Me)C6H4NH2-o, forms complexes with metal(II) salts of empirical compositions [VO(Haath)2SO4], [M(Haath)2Cl2] [M=CoII, NiII, CuII or ZnII] and [M(aath)2] [M=VIVO, CoII, NiII, CuII or ZnII] which have been characterized by elemental analyses, molar conductance, magnetic susceptibility, electronic, e.s.r., i.r. and n.m.r. (1H and13C) spectral studies. X-ray and electron diffraction patterns have been obtained in order to elucidate the structure of the CuII complexes. Photoacoustic spectra of powder NiII complexes have been recorded and interpreted in the light of u.v./vis. spectra.  相似文献   

3.
Summary Metal(II) complexes of 2-acetylthiophene-2-furoylhydrazone (HL) of the types [VO(HL)SO4], [Cu(HL)2Cl2(H2O)], [M(HL)2Cl2] [M=CoII, NiII, or ZnII] and [ML2(H2O)2] [M=CoII, NiII, CuII or ZnII] have been prepared and characterized on the basis of elemental analyses, molar conductance, magnetic susceptibility, visible, e.s.r. and i.r. spectral studies. The bonding and stereochemistry of the complexes are discussed.  相似文献   

4.
Summary Vanillin thiosemicarbazone (VTSC) has been used to isolate the complexes of the types [M(VTSC)2(H2O)2]X2 (M=MnII, FeII, CoII, or NiII and X=Cl) and [M(VTSC)X2]H2O (M=CuII, ZnII, CdII or HgII and X=Cl). Probable structures of these complexes are suggested on the basis of elemental analysis, molar conductance, magnetic moment and electronic and i.r. spectral data. The fungicidal activity of VTSC and the isolated complexes has been evaluated on pathogenic fungi,Alternaria (Sp.),Paecilomyces (Sp.) andPestalotia (Sp.).On leave from the University of Myosore.  相似文献   

5.
Summary The metal complexes of the type [M(SB)2(H2O)2] and [M(SB)2][where M = MnII, CoII, NiII or CuII, M = ZnII CdII, HgII and PbII and SBH = 2-(2-hydroxyacetophenone)imino-5-(p-anisyl)-1,3,4-oxadiazole] have been prepared and characterised by elemental analyses, thermal analyses, magnetic measurements, electronic and infrared spectral studies. The complexes [M(SB)2(H2O)2] possess octahedral structures, whereas complexes [M(SB)2] are tetrahedral. The crystal field parameters of the CoII and NiII complexes are also calculated.  相似文献   

6.
Summary Complexes [VO(Htaptsc)SO4] and [M(Htaptsc)2Cl2] [M=MnII, NiII, CdII or HgII], Cu(Htaptsc)Cl2 and [M(Htaptsc)Cl2] [M=CoII or ZnII], and deprotonated compounds Co(taptsc)2 and [M(taptsc)2] [M=VIVO, MnII, NiII, CuII or ZnII] [Htaptsc=4-(2-thiazolyl)-1-(2-acetylpyridine)thiosemicarbazone] have been characterized by elemental analyses, electrical conductivity and magnetic susceptibility measurements and electronic, e.s.r. and i.r. spectroscopy. The bonding sites of Htaptsc and the bonding and stereochemistry of the complexes are discussed.  相似文献   

7.
The synthesis and characterization of some transition metal cis-3,7-dimethyl-2,6-octadiensemicarbazone (CDOSC) complexes are reported. The ligand CDOSC yields: [ML2 Cl2] and [ML2 Cl2] Cl type complexes, where M = CrIII, MnII, FeIII, CoII, NiII, CuII, ZnII, CdII and HgII, L = CDOSC. Structures of the complexes were determined using elemental analysis, molar conductivity, magnetic measurements, i.r. and electronic, as well as n.m.r spectra. CDOSC acts as a bidentate ligand in all the complexes. All the newly synthesized metal complexes, as well as the ligand, were screened for their antibacterial activity. All the complexes exhibit strong inhibitory action against Gram (+) bacteria Staphylococcus aureus and Gram (−) bacteria Escherichia coli. The antibacterial activities of the complexes are stronger than those of the ligand CDOSC itself.  相似文献   

8.
Synthesis and antibacterial activity of metal complexes of ciprofloxacin   总被引:3,自引:0,他引:3  
The interactions of ciprofloxacin (HCipro) with transition metals have been investigated. Two types of complexes, [M(Cipro)(OAc)(H2O)2] · 3H2O (M = MnII, CoII, CuII or CdII) and [M(Cipro)(OAc)] · 6H2O (M = NiII or ZnII), were obtained and characterized by physicochemical and spectroscopic methods. The i.r. spectra of the complexes suggest that the ciprofloxacin behaves as a monoanionic bidentate ligand. In vitro antibacterial activities of the HCipro and the complexes were tested.  相似文献   

9.
The synthesis of CoII, NiII, CuII and CdII complexes of 2-furfural 4-phenyl semicarbazone (FPSC) with stoichiometric formulae: [M(FPSC)2X2] (M = Co, Ni or Cu; X = Cl or Br), [CuCl2(FPSC)] and [(CdCl2)2(FPSC)] has been obtained for the first time. The complexes were characterized by elemental analysis, molar conductivity, magnetic measurements, i.r., far i.r. and electronic spectra. FPSC is deduced to act as a bidentate ligand in the CoII, NiII and CuII complexes and as a tetradentate one in [(CdCl2)2(FPSC)].  相似文献   

10.
Summary Magnetic susceptibilities of the biacetyldihydrazone (BdH) complexes [M(BdH)3](NO3)2 (M = CoII, NiII, CuII or ZnII), [Fe(BdH)3](NO3)3, [M(BdH)3](Ni(dto)2] (M = CoII, NiII or ZnII; dto = dithiooxalate), [(BdH)2Cu(dto)Ni(dto)] and [Fe(BdH)3]2[Ni(dto)2]3 have been studied in the 4.2–295 K range. ZnII complexes are diamagnetic, and complexes of NiII, CuII and FeIII obey the Curie-Weiss law. The CoII complexes behave anomalously and the results are interpreted in terms of a high spinlow spin equilibrium.  相似文献   

11.
Summary CuII, NiII, CoII, ZnII and PdII complexes of tridentate Schiff base ligands derived from the condensation of benzoic acid hydrazides with 2-aminonicotinaldehyde have been prepared and characterized. For M=Cu, Ni, Co and Zn the complexes were formulated as [M(ligand)(H2O)X] (X=Cl, Br), with a distorted octahedral geometry and tridentate Schiff base ligands. The Pd complexes were formulated as Pd(ligand)Cl2, with square planar geometries and bidentate Schiff base ligands. The e.s.r. spectra of the CuII complexes are discussed.  相似文献   

12.
Asymmetrical macrocyclic complexes of MnII, CoII, NiII, CuII and ZnII have been synthesized by the template process using bis(benzil)ethylenediamine as precursor. Bis(benzil)ethylenediamine reacts with transition metal chlorides and trimethoprim in a 1:1:1 molar ratio in methanol to give several solid metal complexes of the general composition [M(L)X2] (M = MnII, CoII, NiII, CuII and ZnII, L = ligand and X = Cl?). They were characterized by physicochemical and spectroscopic techniques. Based on analytical, spectral and magnetic moments, all the complexes are identified as distorted octahedral structures. All the complexes are of the [M(L)X2] type. The shifts of the ν(CN) (azomethine) stretches have been monitored. To find out the donor sites of the ligands, the activity data show that the metal complexes are more potent than the parent ligand. The [M(L)X2] complexes showed a broad spectrum of antimicrobial activity in vitro against both gram-positive and gram-negative human pathogenic bacterial isolates and the antimicrobial spectrum enhanced only with a combination of metal chlorides and trimethoprim complex. From the results it is imperative that the synthesized macrocyclic [M(L)X2] complexes exhibit potent broad spectrum antibacterial activity.  相似文献   

13.
Summary Complexes of the potentially tetradentate ligand isonitroso-acetylacetone dithiosemicarbazone (inbtH2) of formulae [Ti(inbtH2)Cl2]Cl2, [M(inbt)], where M = VIV O, MnII, NiII or ZnII, [M(inbtH2)X2], where M = CoII and X = Cl, or M = NiII and X = Cl, Br or I, and [M(inbtH2)Cl2]Cl, where M = CrIII or FeIII, have been prepared and characterized by physico-chemical and spectroscopic methods. In all the compounds the metal is coordinated by the thiocarbonyl sulphur and imine nitrogen, as revealed by i.r. studies. The n.m.r. spectra of the complexes of NiII and ZnII confirm coordination through nitrogen. Possible structures for the complexes are proposed. The Mössbauer spectrum of the FeIII complex is discussed.  相似文献   

14.
Summary Biacetyldihydrazone (BdH) complexes [M(BdH)3](NO3)2 (M=CoII, NiII, CuII or ZnII); [Fe(BdH)3](NO3)3; [M(BdH)3][Ni(dto)2] (M=CoII, NiII or ZnII; dto=dithiooxalate); [Cu(BdH)2][Ni(dto)2] and [Fe(BdH)3]2[Ni(dto)2]3 have been prepared and characterized by chemical analysis, conductance measurements, electronic and i.r. spectral studies and cyclic voltammetry.A mononuclear octahedral configuration is proposed for all cationic complexes, excepting [Cu(BdH)2][Ni(dto)2, which is probably a dithiooxalate bridged dimer.  相似文献   

15.
Summary 2-Acetylfuran-2-furoylhydrazone (1), [HL] reacts with metal ions to yield the complexes of two types, compounds [VO(HL)SO4] and M(HL)2Cl2 [M = CoII, NiII or CuII] and compounds M(L)2(H2O)2 [M = CoII, NiII or CuII], depending on the pH of the medium. These complexes have been characterized by elemental analyses, molar conductance, magnetic susceptibility, visible, e.s.r. and i.r. spectral studies. Square pyramidal geometry for [VO(HL)SO4] and octahedral geometry for the remaining complexes are proposed. Part of this work was presented at the Second EUCHEM Conference on Electronic Structures of Transition Metal Complexes, St. Patrick's College, Maynooth, Ireland, 1985.  相似文献   

16.
Summary A variety of metal(II) complexes of 2-carbethoxypyridine (L) have been prepared and characterised. With metal(II) chlorides the bis complexes can be formulated [ML2Cl2]o (M=CuII, NiII, CoII, FeII or MnII). The complexes are six-coordinate with 2-carbethoxypyridine acting as a bidentate ligandvia the pyridine nitrogen and the carbonyl group of the ester. The chloro complexes are nonelectrolytes in nitroethane; magnetic susceptibility measurements, i.r. and d-d electronic spectra are reported. With metal(II) perchlorate salts the complexes can be formulated as six-coordinate [ML2 (OH2)2] [ClO4]2 species containing ionic perchlorate. The ester exchanges of some of these complexes with a variety of primary alcohols have been investigated.  相似文献   

17.
Metallo-guanines of the type [M(G)2·2H2O] [M = NiII, FeII, CuII and UO2 II; G = anionic guanine], [M(G)2(GH)· H2O] (M = CoII and MnII; GH = neutral guanine), [Pd(G)2]·2H2O and [Zn(G)Cl]2 have been isolated and characterised. Anionic guanine functions as a bidentate ligand and links through N(3) and N(9). E.p.r. data indicate that the CuII complex has a highly distorted octahedral structure. The magnetic susceptibility data suggest that the CoII and NiII complexes possess pseudooctahedral geometry. Neutral guanines are probably unidentate and coordinate either through N(3) or N(9). The isolated guanosine complexes are of the types: [M(Gs)2·H2O] [M = NiII and CuII, Gs = anionic guanosine] [Pd(Gs)2]·2H2O and [UO2(Gs)2]. I.r. data indicate that guanosine also functions as a bidentate ligand, but coordinates through N(1) and C2 — NH2. The electronic absorption spectra of the complexes indicate that guanine is a stronger ligand than guanosine.  相似文献   

18.
A novel tetradentate nitrogen donor [N4] macrocyclic ligand, i.e. 1,3,4,8,9,11-hexaaza-2,10-dithia-5,12-dioxo-7,14-diphenyl-cyclotetradecane (L), has been synthesized. Manganese(II),cobalt(II), nickel(II) and copper(II) complexes with this ligand have been prepared and subjected to elemental analyses, molar conductance measurements, magnetic susceptibility measurements, mass, 1H-n.m.r. (Ligand), i.r., electronic, and e.p.r. spectral studies. On the basis of molar conductance the complexes may be formulated as [M(L)X2] [where M = MnII, CoII, NiII, and CoII,and X = Cl & NO 3 ] due to their nonelectrolytic nature in dimethylformamide (DMF). All the complexes are of the high spin type and are six coordinated. On the basis of i.r., electronic and e.p.r. spectral studies an octahedral geometry has been assigned to MnII, and II, II, complexes, and tetragonal for copper(II) complexes. The antimicrobial activities of the ligand and its complexes, as growth inhibiting agents, have been screened in vitro against several species of bacteria and plant pathogenic fungi.  相似文献   

19.
Metal complexes of the flavonoid quercetin: antibacterial properties   总被引:8,自引:0,他引:8  
Two types of complexes were obtained when quercetin (L) was reacted with metal ions in EtOH. The compounds [M(L)Cl2(H2O)2] (M = MnII or CoII) and the semi-oxidized complexes [M(L)2CL2] · 2H2O (M = CdII or HgII) were characterized by elemental analysis., conductivity and magnetic susceptibility measurements, i.r., u.v.–vis. and e.p.r. spectroscopy. The (C=O) stretching mode located on the C ring of the ligand and the complexes remains in the same range, showing that this oxygen atom does not participate in coordination to the metal ions. Magnetic susceptibilities and e.p.r. spectra of powdered samples indicated that the monomeric form of the complexes in the solid state, and the paramagnetic nature of the CdII and HgII complexes is attributable to the semiquinone character of the ligand. The antibacterial activity of the metal complexes were tested against five bacterial strains and compared with penicillin activity.  相似文献   

20.
Binuclear Schiff base complexes derived from glycine (Gly) and 3-acetylpyridine (3-APy) in the presence of M(OAc)2 [M = CoII, NiII, CuII, ZnII and CdII] have been synthesized. The role of pH in promoting the condensation of glycine and 3-acetylpyridine, as well as the substitution of acetates by hydroxide ion, has been discussed. Also, the reaction of glycine with 3-acetylpyridine in the presence of MCl2 [M = CoII and NiII] and MCl3 [M = FeIII and CrIII] yields mono- and/or binuclear complexes containing both of glycine and 3-acetylpyridine without condensation. Both types of complex were isolated and characterized by chemical analysis, conductance, spectral (u.v.–vis., i.r., and 1H-n.m.r.), magnetic and thermal measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号