首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Electrospray ionization linked to quadrupole/orthogonal-acceleration time-of-flight (Q/oaTOF) and ion trap equipment was used to study the fragmentation behavior of the linear side-chain cyclized peptides of the polymyxin B and E antibiotics. This study exemplifies both the benefits and the drawbacks of mass spectrometric techniques for the determination of the sequence of such complex linear side-chain cyclized peptides. Q/oaTOF accurate mass measurements did not help sufficiently to assign the product ions observed in the product ion spectra. An ion trap mass spectrometer providing MS(n) capability was used to eliminate ambiguities encountered with a single MS/MS approach. The complex fragmentation behavior of these compounds of well-established structure is described which could be useful for structural characterization of unknown substances related to polymyxin B and E in the future.  相似文献   

2.
A selective reversed phase liquid chromatography/mass spectrometry (LC/MS(n)) method is described for the identification of erythromycin impurities and related substances in commercial erythromycin samples. Mass spectral data are acquired on a LCQ ion trap mass spectrometer equipped with an electrospray interface operated in positive ion mode. The LCQ is ideally suited for identification of impurities and related substances because it provides on-line LC/MS(n) capability. Compared with UV detection, this hyphenated LC/MS(n) technique provides as a main advantage efficient identification of novel substances without time-consuming isolation and purification procedures. Using this method four novel related substances were identified in commercial samples.  相似文献   

3.
Coupled liquid chromatography and ion trap mass spectrometry (LC/MS) was used for the characterization of the semi-synthetic 16-membered ring macrolide josamycin propionate. On-line identification of impurities in this antibiotic complex was performed with an ion trap mass spectrometer without recourse to time-consuming isolation and purification procedures. Ion trap mass spectrometry is ideally suited to identification of impurities because it provides MSn capability, enabling multiple stages of mass spectrometry to obtain the maximum amount of structural information for a given molecule. The ion trap was used with an electrospray ionization source operated in the positive ion mode or with an atmospheric pressure chemical ionization source operated in the negative ion mode. The identity of the unknown compounds was deduced using the MS/MS and MSn collision-induced dissociation spectra of reference substances or structural analogs as interpretative templates, combined with knowledge about the nature of functional group fragmentation behavior. Given the importance attached to the identification of impurities of unknown identity in pharmaceutical substances, this study is useful for companies producing josamycin propionate. The knowledge of the fragmentation behavior is also of importance in further research on other 16-membered macrolides.  相似文献   

4.
A selective reversed phase liquid chromatography/mass spectrometry (LC/MS(n)) method is described for the identification of related substances in commercial gramicidin samples. Mass spectral data are acquired on an LCQ ion trap mass spectrometer equipped with an electrospray interface operated in the positive and the negative ion mode. The LCQ is ideally suited for identification of related substances because it provides on-line LC/MS(n) capability. Compared with UV detection the main advantage of this hyphenated LC/MS(n) technique is the efficient identification of novel related substances without time-consuming isolation and purification procedures. Using this method four novel related substances were separated and identified in a commercial sample.  相似文献   

5.
With a recently developed liquid chromatographic (LC) method, using a phosphate buffer, several unknown impurities present in dirithromycin samples were separated. In this paper, a reversed-phase liquid chromatography-tandem mass spectrometry method is described for the investigation of dirithromycin and related substances. The method employed uses a Zorbax Extend C18 column (250 mm x 4.6 mm I.D.), 5 microm, and a mobile phase consisting of acetonitrile, 2-propanol, water and ammonium acetate solution pH 8.5. Mass spectral data are acquired on an LCQ ion trap mass spectrometer equipped with an electrospray ion (ESI) source operated in the positive ion mode. The LCQ is ideally suited for the identification of related substances because it provides on-line LC/MS(n) capability, which allows efficient identification without time-consuming isolation and purification procedures. Using this method, the fragmentation behavior of dirithromycin and its related substances was studied and the unknown impurities occurring in commercial samples were investigated. In total the structures of nine impurities were elucidated, among which three were different analogues with a modification in the side chain on the oxazine ring. Two impurities showed a different alkyl group in position C13. In two impurities the desosamine sugar was involved with changes in the degrees of methylation of the amino group. One unknown impurity was identified as dirithromycin F and another unknown was characterized as dirithromycin N-oxide.  相似文献   

6.
A selective reversed-phase liquid chromatography/mass spectrometry (LC/MS(n)) method is described for the identification of azithromycin impurities and related substances in commercial azithromycin samples. Mass spectral data are acquired on an LCQ ion trap mass spectrometer equipped with an atmospheric pressure chemical ionization interface operated in positive ion mode. The LCQ provides on-line LC/MS(n) capability, making it ideally suited for identification purposes. In comparison with UV detection, this hyphenated technique provides as its main advantage efficient identification of novel substances without time-consuming isolation and purification procedures. Using this technique, six novel related substances detected in commercial azithromycin samples have been studied.  相似文献   

7.
The characterization of unknown impurities present in netilmicin and sisomicin by liquid chromatography (LC) coupled with mass spectrometry (MS) is described. The volatile ion-pairing agent trifluoroacetic acid (TFA) was used for the retention of the main compounds and their impurities on a reversed-phase (RP) C18 column, because they are highly hydrophilic and basic compounds. The method showed good separation between netilmicin and its four potential related substances prescribed in the European Pharmacopoeia, which were identified by comparison of their retention times with those of the reference substances. Furthermore, in total 16 unknown impurities in a netilmicin sample and six in a sisomicin sample with unknown identity were detected. The structures of the unknown compounds were deduced based on comparison of fragmentation patterns with those of the reference substances investigated in LC/MSn experiments by the use of electrospray ion trap mass spectrometry.  相似文献   

8.
A simple, isocratic liquid chromatographic (LC) method using volatile mobile phase constituents for the identification of related substances in erythromycin samples is described. For method development, evaporative light scattering detection (ELSD) was used. An XTerra RP18 column was used at 70 degrees C with a mobile phase consisting of acetonitrile-isopropanol-0.2M ammonium acetate pH 7.0-water (165:105:50:680). Mass spectral data were acquired on an ion trap mass spectrometer equipped with an electrospray interface operated in the positive ion mode. First, a library was created using MS/MS and MS(n) spectra of reference substances available in the laboratory. Using these reference spectra as interpretative templates, eight novel related substances in erythromycin samples were identified: N-demethylerythromycin E, erythromycin E N-oxide, anhydroerythromycin C, N-demethylerythromycin B, anhydro-N-demethylerythromycin A, pseudoerythromycin E enol ether, EF lacking the neutral sugar and EA lacking the neutral sugar.  相似文献   

9.
A selective reversed-phase liquid chromatography/mass spectrometry (LC/MS(n)) method is described for the characterization of related compounds in commercial bacitracin samples. Mass spectral data for these polypeptide antibiotics were acquired on a LCQ ion trap mass spectrometer equipped with an electrospray ionization probe operated in the positive and negative ion mode. The LCQ ion trap is ideally suited for the sequencing of those linear side-chain cyclized peptides because it provides on-line LC/MS(n) capability. Using this method bacitracin A, 1-epibacitracin A, bacitracins B(1), B(2), B(3) and bacitracin F were sequenced and previous sequencing was confirmed. Bacitracins C(1), C(2), C(3), D, H(2) and H(3) were resolved chromatographically and their ring portion was sequenced for the first time. Four components not described in the literature (1-epibacitracin B(1), 1-epibacitracin B(2), 1-epibacitracin C(1) and H(4)) were sequenced completely for the first time. The main advantage of this hyphenated LC/MS(n) technique is the characterization of the related substances without time-consuming isolation and purification procedures.  相似文献   

10.
High mass accuracy electrospray ionisation multistage tandem mass spectrometry (MS(n)) was applied to metabolite profiling studies on plasma samples derived from two strains of rat (the Zucker (fa/fa) obese strain and the normal wild type). Using a quadrupole ion trap time-of-flight (QIT-TOF) mass spectrometer, metabolite profiling software was applied to locate components of biological significance that could account for the differences between the two strains of rat and a formula prediction software tool was used to help identify individual components. The primary factor discriminating between the two populations was the concentration of endogenous lipids. In the Zucker (fa/fa) obese strain, the dominant ion signals and MS(n) spectra were in agreement with lysoglycerophosphocholine components such as palmitoyllysophosphatidylcholine, 1-oleoylglycerophosphocholine, 1-octadecyl-sn-glycero-3-phosphocholine and 1-stearoylglycerophosphocholine and these were found in relatively higher concentrations compared to the normal wild type. Components were identified using high mass accuracy MS(n) data, formula prediction software and by agreement with published mass spectra through internet databases, rather than using a conventional approach with authentic standards. This application shows that the use of high mass accuracy electrospray ionisation MS(n) together with a software tool can be used effectively to detect and characterise unknown analytes in complex matrices, and represents a promising approach for future profiling studies.  相似文献   

11.
Recent advancements in mass spectrometry including data-dependent scanning and high-resolution mass spectrometry have aided metabolite profiling for non-radiolabeled xenobiotics. However, narrowing down a site of metabolism is often limited by the quality of the collision-induced dissociation (CID)-based precursor ion fragmentation. An alternative dissociation technique, higher energy collisional dissociation (HCD), enriches compound fragmentation and yields 'triple-quadrupole-like fragmentation'. Applying HCD along with CID and data-dependent scanning could enhance structural elucidation for small molecules. Liquid chromatography/multi-stage mass spectrometry (LC/MS(n) ) experiments with CID and HCD fragmentation were carried out for commercially available compounds on a hybrid linear ion trap orbital trap mass spectrometer equipped with accurate mass measurement capability. The developed method included stepped normalized collision energy (SNCE) parameters to enhance MS fragmentation without tuning for individual compounds. All the evaluated compounds demonstrated improved fragmentation under HCD as compared with CID. The results suggest that an LC/MS(n) method that incorporated both SNCE HCD- and CID-enabled precursor ion fragmentation afforded comprehensive structural information for the compounds under investigation. A dual collision cell approach was remarkably better than one with only CID MS(n) in an orbital trap. It is evident that such an acquisition method can augment the identification of unknown metabolites in drug discovery by improving fragmentation efficiency of both the parent compound and its putative metabolite(s).  相似文献   

12.
A sensitive, precise and accurate quantitative liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for the measurement of erythromycin A (EA) and related substances in commercial samples was developed and validated. The samples were chromatographed on a reversed-phase column with a polar endcapping and analyzed by ion trap tandem mass spectrometry in the multiple reaction monitoring (MRM) mode using positive electrospray ionization. The method showed high recovery (>or=98.82%), high sensitivity (lower limit of quantitation of 0.25 ng/mL for EA and less than 7.3 ng/mL for the related substances) and high precision (or=0.991) with a run time of only 13 min. The method was successfully applied to the determination of EA and related substances in commercial samples. Moreover, using the advanced data-dependent acquisition capability of the ion trap software two new unexpected EA related substances could be detected and possible structures for these substances were postulated.  相似文献   

13.
An emerging trend is recognised in hormone and veterinary drug residue analysis from liquid chromatography tandem mass spectrometry (LC/MS/MS) based screening and confirmation towards accurate mass alternatives such as LC coupled with time-of-flight (TOF), Fourier transform ion cyclotron resonance (FTICR) or Fourier transform orbitrap (FT Orbitrap) MS. In this study, mass resolution and accuracy are discussed for LC/MS screening and confirmation of targeted analytes and for the identification of unknowns using the anabolic steroid stanozolol and the designer beta-agonist "Clenbuterol-R" as model substances. It is shown theoretically and experimentally that mass accuracy criteria without proper mass resolution criteria yield false compliant (false negative) results, both in MS screening and MS/MS confirmation of stanozolol. On the other hand, previous medium resolution accurate mass TOFMS/MS data of the designer beta-agonist were fully confirmed by high resolution FT Orbitrap MS(n) experiments. A discussion is initiated through a proposal for additional criteria for the use of accurate mass LC/MS technologies, to be implemented in Commission Decision 2002/657/EC.  相似文献   

14.
The characterization of unknown impurities present in tobramycin by liquid chromatography (LC) coupled with mass spectrometry (MS) is described. A reversed-phase (RP)-LC method using a volatile mobile phase containing a perfluorinated ion-pair reagent was developed and coupled with an ion trap mass spectrometer. The structures of the unknown impurities were deduced by comparison of their fragmentation patterns with those of the available reference substances obtained by LC–MSn experiments.  相似文献   

15.
In this report, the mass spectral analysis of azaspiracid biotoxins is described. Specifically, the collision-induced dissociation (CID) behavior and differences between CID spectra obtained on a triple-quadrupole, a quadrupole time-of-flight, and an ion-trap mass spectrometer are addressed here. The CID spectra obtained on the triple-quadrupole mass spectrometer allowed the classification of the major product ions of the five investigated compounds (AZA 1-5) into five distinct fragment ion groups, according to the backbone cleavage positions. Although the identification of unknown azaspiracids was difficult based on CID alone, the spectra provided sufficient structural information to allow confirmation of known azaspiracids in marine samples. Furthermore, we were able to detect two new azaspiracid analogs (AZA 1b and 6) in our samples and provide a preliminary structural analysis. The proposed dissociation pathways under tandem mass spectrometry (MS/MS) conditions were confirmed by a comparison with accurate mass data from electrospray quadrupole time-of-flight MS/MS experiments. Regular sequential MS(n) analysis on an ion-trap mass spectrometer was more restricted in comparison to the triple-quadrupole mass spectrometer, because the azaspiracids underwent multiple [M + H - nH(2)O](+) (n = 1-6) losses from the precursor ion under CID. Thus, the structural information obtained from MS(n) experiments was somewhat limited. To overcome this limitation, we developed a wide-range excitation technique using a 180-u window that provided results comparable to the triple-quadrupole instrument. To demonstrate the potential of the method, we applied it to the analysis of degraded azaspiracids from mussel tissue extracts.  相似文献   

16.
A sensitive liquid chromatograph/tandem mass spectrometric technique (LC/MS/MS) was applied to determine aliphatic and aromatic carbonyl compounds in ambient air. Traces of the carbonyl compounds were sampled by passing through a Sep-Pak DNPH-silica cartridge. Their derivatives were thus eluted with acetonitrile, separated by reversed-phase liquid chromatography and determined by quadrupole tandem mass spectrometry in an atmospheric pressure chemical ionization (APCI) mode with multiple reaction monitoring (MRM). The detection limits (DL) of the carbonyl compounds were 0.8 - 15 ng/m3. A number of the carbonyl compounds were detected at n.d.- 14 microg/m3 levels. The precursor ion scanning analysis was applied to identify the unknown compounds.  相似文献   

17.
A method using liquid chromatography/tandem mass spectrometry (LC/MS/MS) has been developed for the determination of basal acetylcholine (ACh) in microdialysate from the striatum of freely moving rats. A microdialysis probe was surgically implanted into the striatum of the rats and Ringer's solution was used as the perfusion medium at a flow rate of 2 microL per minute. The samples were then analyzed off-line by LC/MS/MS experiments. The separation of ACh and choline (Ch) was carried out using reverse phase ion pair liquid chromatography with heptafluorobutyric acid as a volatile ion pairing reagent. Analytes were detected by electrospray ionization tandem mass spectrometry in the positive ion mode. The detection limit for ACh was 1.4 fmol on column, which is at least three times lower than previously reported. Three quaternary ammonium compounds in the rat brain microdialysate were also identified by tandem mass spectrometry experiments in which the unknown mass spectra were compared with standard reference compounds. These compounds were identified as carnitine, acetylcarnitine and (3-carboxypropyl)trimethylammonium. This is the first known report of the compound (3-carboxypropyl)trimethylammonium being found in rat brain.  相似文献   

18.
For the detection of security-relevant substances at low concentrations in complex matrices, coupling of thermal desorption–single photon ionization–ion trap mass spectrometry (TD-SPI-ITMS) was successfully tested. The main advantage of taking solid samples with a wipe pad followed by thermal desorption is the low detection limit by enhanced vapor pressure. Single photon ionization is a soft ionization technique which reduces the target ion fragmentation and shields bulk components with high ionization energies (IE) like nitrogen yielding to clearly arranged mass spectra with significant high mass peaks. To obtain low false-positive and false-negative rates, especially necessary for security-relevant substances, the ion trap mass spectrometer allows identification of signals with MS/MS studies. In this concept, the soft ionization technique fits well with the MS/MS studies, as peaks with high masses are generated yielding significant MS/MS fragments. For the ionization, photon energies between about 8 eV (155 nm) and 12 eV (103 nm) were generated with electron-beam-pumped rare gas excimer lamps (EBEL). Depending on the rare gas used, light with different photon energy is generated, adapted to the substances of interest. So, even most narcotics, having relatively low IEs, can be ionized with 8.4 eV photons without massive fragmentation. For most explosives, photons with higher energy must be used as their IEs are higher. In this work, a mobile setup with a commercial ion trap mass spectrometer has been developed and tested. Even a first real-scenario measurement campaign was accomplished successfully proving the field-suitability of the system.  相似文献   

19.
The fragmentations of hydroxylated flavanones, chalcones and dihydrochalcones were investigated by direct loop injection using an ion trap mass spectrometry equipped with atmospheric pressure chemical ionization (APCI) probe. Some of them have been isolated from the leaves of Piper hostmannianum var. berbicense and standards were used to confirm their fragmentation behaviour. In negative ion mode, fragmentations of these three types of flavonoids revealed specific diagnostic ions which allowed us to identify aglycones in a crude plant extract. The major fragment ion obtained in MS/MS experiment for methoxylated chalcones is the neutral loss of a methyl radical whereas a H(2)O molecule is lost in the case of methoxylated dihydrochalcones. Methoxylated chalcones and flavanones isomers could be differentiated by the relative intensity ratio of [M-H-CH(3)]*(-) and [M-H-C(2)H(2)O](-) ions. Based on UV and MS data, a decision tree that includes UV lambda(max) absorptions and MS/MS diagnostic ions was built in order to obtain structural information of unknown compounds present in the extract. This tree was used to identify flavonoids in the ethyl acetate extract of P. hostmannianum var. berbicense leaves after analysis by high-performance liquid chromatography-diode array detection-atmospheric pressure chemical ionization ion trap multistage mass spectrometry. A total of 11 flavonoids were tentatively characterized based on the MS fragmentations pattern observed in MS(n) experiments.  相似文献   

20.
We have previously described the site-specific glycosylation analysis of rat brain Thy-1 by LC/multistage tandem mass spectrometry (MS(n)) using proteinase-digested Thy-1. In the present study, detailed structures of oligosaccharides released from Thy-1 were elucidated by mass spectrometric oligosaccharide profiling using LC/MS with a graphitized carbon column (GCC-LC/MS). First, using model oligosaccharides, we improved the oligosaccharide profiling by ion trap mass spectrometry (IT-MS) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Sequential scanning of a full MS(1) scan with FT-ICR-MS followed by data-dependent MS(n) with IT-MS in positive ion mode, and a subsequent full MS(1) scan with FT-ICR-MS followed by data-dependent MS(n) with IT-MS in negative ion mode enabled the monosaccharide composition analysis as well as profiling and sequencing of both neutral and acidic oligosaccharides in a single analysis. The improved oligosaccharide profiling was applied to elucidation of N-linked oligosaccharides from Thy-1 isolated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It was demonstrated that Thy-1 possesses a significant variety of N-linked oligosaccharides, including Lewis a/x, Lewis b/y, and disialylated structure as a partial structure. Our method could be applicable to analysis of a small abundance of glycoproteins, and could become a powerful tool for glycoproteomics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号