首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In response to the rapid advances in microelectronics, novel cooling technologies are needed to meet increasing cooling requirements. As a paradigm-shifting technique, electrowetting-on-dielectric (EWOD) uses electric potential to control the movement of a liquid droplet on a dielectric surface. In this work, we developed an EWOD-based microfluidic technique for active and adaptive thermal management of on-chip hot spots. A two-dimensional array of control electrodes was patterned on the chip surface for EWOD operations. By applying DC or AC voltages with appropriate sequence and timing to the electrode units, we were able to transport microdroplets of tens of μL along a programmable path. Without the need of external pumps and valves, the droplets were precisely delivered to cooling targets. With the driving voltage as low as 40 VAC, we demonstrate high heat flux (7.6 W/cm2) cooling on a hot spot. The EWOD-induced internal circulation within the droplets led to a time-averaged Nusselt number of ~45.  相似文献   

2.
This paper presents the results of an experimental investigation, into the effect of water in diesel and kerosene emulsions, on the evaporation time of a single droplet, on hot surfaces (stainless-steel and aluminum). Experiments are performed at atmospheric pressure, and initial water volume concentrations of 10, 20, 30, and 40%. The wall temperatures ranging from 100–460 °C, to cover the entire spectrum of heat transfer characteristics from evaporation to film boiling. Results show that, qualitatively, the shapes of emulsion evaporation curves are very similar to that of pure liquids. Quantitavely, there are significant differences. The total evaporation time, for the emulsion droplets is lower than that for diesel and kerosene fuels, and decreased as water initial concentration increases, up to surface temperatures less than the critical temperature. The value of the critical surface temperature (maximum heat transfer rate), decreases as initial concentration of water increases. In the film-boiling region, the evaporation time for the emulsion droplets is higher than for diesel and kerosene droplets, at identical conditions.List of Symbols hfg latent heat of vaporization, KJ/kg - m mass of the droplet, gm - Tb boiling temperature, °C - Tc critical temperature, °C - TL Leidenfrost temperature, °C - Ts initial surface temperature of the hot surface, °C  相似文献   

3.
Experimental study of water droplet boiling on hot, non-porous surfaces   总被引:1,自引:0,他引:1  
In this paper, the results of a series of experimental tests on single- and multi-droplet boiling systems are presented and discussed. The main objectives of the present study are: a) to investigate experimentally the effect of the boiling onset on the evaporation rate of water droplets; b) to measure the evolution of the solid surface temperature during evaporation; c) to examine the possibility of improving spray cooling efficiencies. The behavior of small water droplets (from 10 to 50 μl) gently deposited on hot, non-porous surfaces is observed. The evaporation of multi-droplet arrays (50 and 100 μl) under the same conditions of the single-droplet tests is analyzed. In particular, the conditions which determine the onset of nucleate and film boiling are stressed out. In the experimental tests, the interaction of different materials with several multi-droplet systems is monitored by infrared thermography. The spray cooling efficiency is related to the solid temperature decrease as a function of the water mass flux. In the present study, the effect of varying the droplet volume and the mass flux is also analyzed and discussed. The results on the droplets evaporation time and on the solid surface transient temperature distribution are also compared with the data obtained by the same authors during the analysis of droplet evaporation in total absence of nucleate and film boiling. In order to analyze the different behavior of the evaporating droplet as a function of the solid surface thermal conductivity, evaporative transients on aluminum, stainless steel and macor (a glass-like, low-conductivity material) are considered. Received on 20 February 1998  相似文献   

4.
Two-phase CFD calculations, using a Lagrangian model and commercial code Fluent 6.2.16, were employed to calculate the gas and droplet flows and film cooling effectiveness with and without mist on a flat plate. Two different three dimensional geometries are generated and the effects of the geometrical shape, size of droplets, mist concentration in the coolant flow and temperature of mainstream flow for different blowing ratios are studied. A cylindrical and laterally diffused hole with a streamwise angle of 30° and spanwise angle of 0° are used. The diameter of film cooling (d) hole, and the hole length to diameter ratio (L/d) for both of geometries are 10 mm and 4, respectively. Also the blowing ratio ranges from 1.0 to 2.0, and the mainstream Reynolds number based on the mainstream velocity and hole diameter (Re d) is 6,219. The results are shown for different droplets diameters (1–10 μm), concentrations (1–5%) and mainstream temperatures (350–500 K). The centreline effectiveness and distribution of effectiveness on the surface of cooling wall are presented.  相似文献   

5.
The present article reports on heat transfer characteristics associated with multiple laminar impinging air jet cooling a hot flat plat at different orientations. The work aims to study the interactions of the effects of cross flow, buoyancy induced flow, orientation of the hot surface with respect to gravity, Reynolds numbers and Rayleigh numbers on heat transfer characteristics. Experiments have been carried out for different values of jet Reynolds number, Rayleigh number and cross flow strength and at different orientations of the air jet with respect to the target hot plate. In general, the effective cooling of the plate has been observed to be increased with increasing Reynolds number and Rayleigh number. The results concluded that the hot surface orientation is important for optimum performance in practical applications. It was found that for Re ≥ 400 and Ra ≥ 10,000 (these ranges give 0.0142 ≤ Ri ≤ 1.59 the Nusselt number is independent on the hot surface orientation. However, for Re ≤ 300 and Ra ≥ 100,000 (these ranges give 1.59 ≤ Ri ≤ 42.85): (i) the Nusselt number for horizontal orientation with hot surface facing down is less that that of vertical orientation and that of horizontal orientation with hot surface facing up, and (ii) the Nusselt number of vertical orientation is approximately the same as that of horizontal orientation with hot surface facing up. For all surfaces orientations and for the entire ranges of Re and Ra, it was found that increasing the cross flow strength decreases the effective cooling of the surface.  相似文献   

6.
 An experimental study of transient boiling heat transfer during a cooling of a hot cylindrical block with an impinging water jet has been made at atmospheric pressure. The experimental data were taken for the following conditions: a degree of subcooling of ΔT sub = 20–80 K, a jet velocity of u j  = 5–15 m/s, a nozzle diameter of d j  = 2 mm and three materials of copper, brass and carbon steel. The block was initially and uniformly heated to about 250 °C and the transient temperatures in the block were measured at eight locations in r-direction at two different depths from the surface during the cooling of hot block. The surface heat flux distribution with time was evaluated using a numerical analysis of 2-D heat conduction. Behavior of the wetting front, which is extending the nucleate boiling region outward, is observed with a high-speed video camera. A position of wetting region is measured and it is correlated well with a power function of time. The changes in estimated heat flux and temperature were compared with the position of wetting region to clarify the effects of subcooling, jet velocity and thermal properties of block on the transient cooling. Received on 17 March 2000  相似文献   

7.
We describe a highly-detailed experimental characterization of the Richtmyer-Meshkov instability (the impulsively driven Rayleigh-Taylor instability) (Meshkov 1969; Richtmyer 1960). In our experiment, a vertical curtain of heavy gas (SF6) flows into the test section of an air-filled, horizontal shock tube. The instability evolves after a Mach 1.2 shock passes through the curtain. For visualization, we pre-mix the SF6 with a small (∼10−5) volume fraction of sub-micron-sized glycol/water droplets. A horizontal section of the flow is illuminated by a light sheet produced by a combination of a customized, burst-mode Nd:YAG laser and a commercial pulsed laser. Three CCD cameras are employed in visualization. The “dynamic imaging camera” images the entire test section, but does not detect the individual droplets. It produces a sequence of instantaneous images of local droplet concentration, which in the post-shock flow is proportional to density. The gas curtain is convected out of the test section about 1 ms after the shock passes through the curtain. A second camera images the initial conditions with high resolution, since the initial conditions vary from test to test. The third camera, “PIV camera,” has a spatial resolution sufficient to detect the individual droplets in the light sheet. Images from this camera are interrogated using Particle Image Velocimetry (PIV) to recover instantaneous snapshots of the velocity field in a small (19 × 14 mm) field of view. The fidelity of the flow-seeding technique for density-field acquisition and the reliability of the PIV technique are both quantified in this paper. In combination with wide-field density data, PIV measurements give us additional physical insight into the evolution of the Richtmyer-Meshkov instability in a problem which serves as an excellent test case for general transition-to-turbulence studies. Received: 26 June 1999/Accepted: 29 October 1999  相似文献   

8.
In the present study, the applicability of air atomized spray with the salt added water has been studied for ultra fast cooling (UFC) of a 6 mm thick AISI-304 hot steel plate. The investigation includes the effect of salt (NaCl and MgSO4) concentration and spray mass flux on the cooling rate. The initial temperature of the steel plate before the commencement of cooling is kept at 900 °C or above, which is usually observed as the “finish rolling temperature” in the hot strip mill of a steel plant. The heat transfer analysis shows that air atomized spray with the MgSO4 salt produces 1.5 times higher cooling rate than atomized spray with the pure water, whereas air atomized spray with NaCl produces only 1.2 times higher cooling rate. In transition boiling regime, the salt deposition occurs which causes enhancement in heat transfer rate by conduction. Moreover, surface tension is the governing parameter behind the vapour film instability and this length scale increases with increase in surface tension of coolant. Overall, the achieved cooling rates produced by both types of salt added air atomized spray are found to be in the UFC regime.  相似文献   

9.
The collision of single water droplets with a hot Inconel 625 alloy surface was investigated by a two-directional flash photography technique using two digital still cameras and three flash units. The experiments were conducted under the following conditions: the pre-impact diameters of the droplets ranged from 0.53 to 0.60 mm, the impact velocities ranged from 1.7 m/s to 4.1 m/s, and the solid surface temperatures ranged from 170 °C to 500 °C. When a droplet impacted onto the solid at a temperature of 170 °C, weak boiling was observed at the liquid/solid interface. At temperatures of 200 or 300 °C, numerous vapor bubbles were formed. Numerous secondary droplets then jetted upward from the deforming droplet due to the blowout of the vapor bubbles into the atmosphere. No secondary droplets were observed for a surface temperature of 500 °C at the low-impact Weber numbers (∼30) associated with the impact inertia of the droplets. Experiments using 2.5-mm-diameter droplets were also conducted. The dimensionless collision behaviors of large and small droplets were compared under the same Weber number conditions. At temperatures of less than or equal to 300 °C, the blowout of vapor bubbles occurred at early stages for a large droplet. At a surface temperature of 500 °C, the two dimensionless deformation behaviors of the droplets were very similar to each other.  相似文献   

10.
Transpiration cooling using ceramic matrix composite materials is an innovative concept for cooling rocket thrust chambers. The coolant (air) is driven through the porous material by a pressure difference between the coolant reservoir and the turbulent hot gas flow. The effectiveness of such cooling strategies relies on a proper choice of the involved process parameters such as injection pressure, blowing ratios, and material structure parameters, to name only a few. In view of the limited experimental access to the subtle processes occurring at the interface between hot gas flow and porous medium, reliable and accurate simulations become an increasingly important design tool. In order to facilitate such numerical simulations for a carbon/carbon material mounted in the side wall of a hot gas channel that are able to capture a spatially varying interplay between the hot gas flow and the coolant at the interface, we formulate a model for the porous medium flow of Darcy–Forchheimer type. A finite‐element solver for the corresponding porous medium flow is presented and coupled with a finite‐volume solver for the compressible Reynolds‐averaged Navier–Stokes equations. The two‐dimensional and three‐dimensional results at Mach number Ma = 0.5 and hot gas temperature THG=540 K for different blowing ratios are compared with experimental data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The cooling effect of liquid droplets introduced into a hot gas stream flowing in an adiabatic duct is analysed. The coupled interaction between the changes in the droplets and in the surrounding gas conditions is examined as a result of droplets vaporization. It was found that the use of liquid sprays as a rapid cooling process for a hot gas discharge is quite effective.  相似文献   

12.
An analytical model is presented that describes the equilibrium pressure within a confined droplet for small Bond numbers without prior knowledge of the interface shape. An explicit equation for the pressure was developed as a function of the gap height, surface tension, and contact angle. This equation was verified empirically. The shape of the interface was found based on the pressure predicted by both the proposed model and a model commonly used in electrowetting on dielectric (EWOD) investigations. These shapes were compared against experimentally observed interfaces for aspect ratios between 3.5 and 18. The pressures and shapes predicted by the proposed model were at least an order of magnitude more accurate than those predicted with a more commonly used model. At an aspect ratio of 3.5, the average error in the predicted shape was almost 4%, but decreased below the experimental error at an aspect ratio of 6. An aspect ratio of 15 is required for an EWOD device to split water droplets in air. The error in the model pressure and its predicted interface in this case were approximately 0.3%. The analytical pressure model proposed here can be used to increase the accuracy of models of practical EWOD devices. Better accuracy can be attained for small aspect ratios by iteratively calculating pressure using the model proposed here.  相似文献   

13.
Reversible control of surface wettability has wide applications in lab-on-chip systems, tunable optical lenses, and microfluidic tools. Using a graphene sheet as a sample material and molecular dynamic simulations, we demonstrate that strain engineering can serve as an effective way to control the surface wettability. The contact angles θ of water droplets on a graphene vary from 72.5 to 106 under biaxial strains ranging from 10% to 10% that are applied on the graphene layer. For an intrinsic hydrophilic surface (at zero strain), the variation of θ upon the applied strains is more sensitive, i.e., from 0 to 74.8 . Overall the cosines of the contact angles exhibit a linear relation with respect to the strains. In light of the inherent dependence of the contact angle on liquid-solid interfacial energy, we develop an analytic model to show the cos θ as a linear function of the adsorption energy E ads of a single water molecule over the substrate surface. This model agrees with our molecular dynamic results very well. Together with the linear dependence of E ads on biaxial strains, we can thus understand the effect of strains on the surface wettability. Thanks to the ease of reversibly applying mechanical strains in micro/nano-electromechanical systems, we believe that strain engineering can be a promising means to achieve the reversibly control of surface wettability.  相似文献   

14.
The impact of droplets onto micro-structured surfaces has been the focus of numerous recent studies, under the perspective of many different applications. However, much is still to be known about the effects of surface patterning in order to devise realistic physical models to accurately predict interfacial transfer rates. In this context, the present paper addresses the question of how to scale the effects of the surface topography to find adequate parameters, which can be easily obtained a priori. The approach is based on the characterization of the hydrodynamic and thermal behaviors of individual droplets impacting onto smooth and micro-structured heated surfaces, with the objective of quantifying the effects of the modified wettability associated with the topography of the surface. The focus is put on the thermal-induced mechanisms of secondary atomization as these are of particular interest for spray-cooling applications. The analysis suggests that different wetting properties lead to particular characteristics of the thermal-induced atomization, which can be related with the ratio between the roughness amplitude and the fundamental wavelength of the surface topography R aR. This hypothesis is consistent with the theoretical prediction of the wetting behavior of the surfaces. The results also show a good correlation between the mean sizes of the secondary droplets generated by thermal-induced atomization and the ratio R aR.  相似文献   

15.
A non-equilibrium post dryout heat transfer model for calculating the wall temperature distribution in vertical upflows is presented in this study. The model is based upon the three path heat transfer formulation developed by MIT researchers (Laverty & Rohsenow 1964, Forslund & Rohsenow 1968, Hynek et al. 1969 and Plummer et al. 1974) that involves heat transfer from wall to vapor, from wall to droplets in contact with the wall and from vapor to liquid droplets in the vapor core. Downstream gradients for the bulk vapor temperature, vapor quality, droplet size and vapor velocities are identical to those used by Hynek et al. (1969) and Plummer et al. (1974). Conditions at the dryout location are calculated using a modified version of a technique developed by Hynek et al. (1969).A procedure for determining an average droplet diameter based on a size distribution is introduced. Migration of droplets through the boundary layer and droplet deposition flux are predicted with the model of Gani? & Rohsenow (1979). Heat transfer from the wall to the impinging liquid droplets is calculated with a correlation by Holman & McGinnis (1969). Mechanisms contributing to wall to droplet heat transfer are identified as (a) droplet-wall contact, (b) intensive droplet evaporation inside the boundary layer, and (c) destruction of the boundary layer due to droplet migration to, and rebound from, the hot surface. The significance of the average droplet size and size distribution is demonstrated through its control over the free stream evaporation and droplet deposition rates.Predicted uniform heat flux wall temperature profiles for water, nitrogen and freon 12 are in good agreement with the data of Era et al. (1966), Bennett et al. (1967), Forslund & Rohsenow (1968), Ling et al. (1971), Groeneveld (1972) and Janssen & Kervinen (1975).  相似文献   

16.
This article presents a facile approach to preparation of polystyrene/silver (PS/Ag) asymmetric hybrid par- ticles. In this method, polystyrene/polyglycidyl methacrylate (PS/PGMA) Janus particles were synthesized via internal phase separation triggered by evaporation of dichloromethane (DCM) from PS/PGMA/DCM- in water emulsion droplets. Then, the Janus particles were aminated and sequentially carboxylated to obtain PS/PGMA-NH2 and PS/PGMA-COOH particles. Ag+ self-assembled on the surface of PGMA hemi- sphere of the functionalized PS/PGMA particles by coordinating with amine/carboxyl. PS/Ag asymmetric hybrid particles with 7.29 wt% of Ag were obtained by reduction of Ag+, Scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy results confirmed that Ag was asymmetrically distributed on the surface of polymer particles.  相似文献   

17.
An experimental investigation of thermocapillary flow in droplets of a vegetable oil (partially hydrogenated soybean oil) immersed in silicone oil was conducted in a test cell with a heated top wall and a cooled bottom wall. The liquids are nearly immiscible and have equal densities at a temperature below the room temperature, thus providing a simulation of low-gravity conditions by reducing the buoyancy forces. The interfacial tension between the two oils was measured in the temperature range 20–50°C using a capillary tube and d/dT was determined to be negative. Droplets ranging in sizes from 3 mm to 1 cm diameter were injected into the silicone oil. The vertical temperature profile in the bulk liquid (silicone oil) produces temperature variations along the interface which induce variations in the interfacial tension. The flow inside the droplet driven by the resulting interfacial shear stresses was observed using a laser light-sheet flow visualization technique. The flow direction is consistent with the sign of d/dT. The observed maximum surface velocities are compared to the theoretical predictions of Young et al. (1959).For short times after injection, the droplets were driven by this flow towards the hot wall above the matched-density temperature until the droplets reached a point where the forces due to the flow and buoyancy were equal. After longer times, the droplets moved to the cold side due to suspected density changes caused by mass transfer from the droplets to the silicone oil. This was confirmed by tests under isothermal conditions, where it was observed that droplets of all sizes fell to the cold bottom eventually.Thus, even though the thermocapillary flow inside the droplets persisted for long times in spite of the mass transfer, the migration of droplets towards the hot side was eventually affected by uncontrolled buoyancy forces resulting from density changes due to mass transfer. While additional liquids are being tried, it is suggested from the present experience that reduced gravity experiments will probably be necessary to provide unambiguous data for the migration of droplets.  相似文献   

18.
19.
 In this paper, we present a modelling of the performance of a reactor of a solar cooling machine based carbon–ammonia activated bed. Hence, for a solar radiation, measured in the Energetic Laboratory of the Faculty of Sciences in Tetouan (northern Morocco), the proposed model computes the temperature distribution, the pressure and the ammonia concentration within the activated carbon bed. The Dubinin–Radushkevich formula is used to compute the ammonia concentration distribution and the daily cycled mass necessary to produce a cooling effect for an ideal machine. The reactor is heated at a maximum temperature during the day and cool at the night. A numerical simulation is carried out employing the recorded solar radiation data measured locally and the daily ambient temperature for the typical clear days. Initially the reactor is at ambient temperature, evaporating pressure; P ev =P st (T ev =0 C) and maintained at uniform concentration. It is heated successively until the threshold temperature corresponding to the condensing pressure; P cond =P st (T am ) (saturation pressure at ambient temperature; in the condenser) and until a maximum temperature at a constant pressure; P cond . The cooling of the reactor is characterised by a fall of temperature to the minimal values at night corresponding to the end of a daily cycle. We use the mass balance equations as well as energy equation to describe heat and mass transfer inside the medium of three phases. A numerical solution of the obtained non linear equations system based on the implicit finite difference method allows to know all parameters characteristic of the thermodynamic cycle and consider principally the daily evolution of temperature, ammonia concentration for divers positions inside the reactor. The tube diameter of the reactor shows the dependence of the optimum value on meteorological parameters for 1 m2 of collector surface. Received on 10 January 2001  相似文献   

20.
The aim of this work is to carry out an experimental investigation into the generation of airborne microparticles when millimetric droplets of aqueous solutions impact onto a liquid film. Impact experiments using 3.9 mm diameter droplets were carried out for Weber numbers between 159 and 808, with a fixed Ohnesorge number of 2 × 10−3 and film parameters S f (the ratio between the thickness of the liquid film h film and the diameter of the impacting droplet d i) between 0.3 and 1. Observed results show that the deposition/splashing threshold is independent of the parameter S f in agreement with the data in the literature. The aerosol measurement results demonstrate the production of solid particles from the evaporation of secondary microdroplets with diameters less than 30 μm formed when splash occurs. The median diameter of these microdroplets is around 20 μm, corresponding to a value of d 50/d i = 5 × 10−3. Taken together, the results show that the mass and the number of particles emitted increase as the Weber number increases. Moreover, at a Weber number of 808, the results show that the mass and number of particles emitted increases as the parameter S f decreases. In this case, the mean number of microdroplets emitted per impact is equal to 14 for S f = 1 and equal to 76 for S f = 0.3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号