首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
N,N′-bis(salicylidene)-1,3-propanediamine (LH2), N,N′-bis(salicylidene)-2,2′-dimethyl-1,3-propanediamine (LDMH2), N,N′-bis(salicylidene)-2-hydroxy-1,3-propanediamine (LOH3), N,N′-bis(2-hydroxyacetophenylidene)-1,3-propanediamine (LACH2) and N,N′-bis(2-hydroxyacetophenone)-2,2′-dimethyl-1,3-propanediamine (LACDMH2) were synthesized and reduced to their phenol-amine form in alcoholic media using NaBH4 (LHH2, LDMHH2, LOHHH2, LACHH2 and LACDMHH2). Heterodinuclear complexes were synthesized using Ni(II), Zn(II) and Cd(II) salts, according to the template method in DMF media. The complex structures were analyzed using elemental analysis, IR spectroscopy, and thermogravimetry. Suitable crystals of only one complex were obtained and its structure determined using X-ray diffraction, NiLACH·CdBr2·DMF2, space group orthorhombic, Pbca, a=20.249, b=14.881, c=20.565 ? and Z=8. The heterodinuclear complexes were seen to be of [Ni·ligand·MX2·DMF2] structure (ligand=LH2−, LDMH2−, LOHH2−, LACH2−, LACDMH2−, M=ZnII, CdII, X=Br, I). Thermogravimetric analysis showed irreversible bond breakage of the coordinatively bonded DMF molecules followed by decomposition at this temperature.  相似文献   

2.
Three new potentially hexadentate N4O2 Schiff-base ligands (H2L1, H2L2 and H2L3) were prepared from the reaction of the polyamines N,N′-bis(2-aminophenyl)-1,2-ethanediamine (L1), N,N′-bis(2-aminophenyl)-1,3-propanediamine (L2) and N,N′-bis(2-aminophenyl)-1,4-butanediamine (L3), respectively with salicylaldehyde. Reaction of the Schiff bases with Ni(II) salts in the presence of N(Et)3 gave the neutral complexes [NiL4], [NiL5] and [NiL6]. Ni(II) complexes of the polyamines were also prepared. One of complexes [Ni(L1)(MeCN)2](ClO4)2·MeCN has been characterized through X-ray diffraction methods.  相似文献   

3.

Abstract  

A new one-dimensional polymeric copper(I)–thiocyanate complex with the Schiff base ligand N,N′-bis(3,4-dimethoxybenzylidene)butane-1,4-diamine, {Cu2((μ N,N′ -3,4-MeO-ba)2bn)(μ1,3-NCS)2} n , was synthesized and characterized by elemental analysis, 1H and 13C NMR, FT–IR spectroscopy, and thermal analysis. The thermal behavior of the complex was studied using thermogravimetry in order to evaluate thermal stability and thermal decomposition pathways. The molecular structure of the complex was determined by single-crystal X-ray diffraction which revealed that the coordination geometry around the copper(I) ion is distorted trigonal. The Schiff base ligand (3,4-MeO-ba)2bn acts as a bis-monodentate and bridging ligand (μ N,N′ ) and coordinates via two N atoms to the metal centers and adopts an E,E conformation. The coordination spheres of the metal atoms are completed by the N and S atoms from two thiocyanate anion bridges (μ1,3-NCS), forming a zigzag chain propagating along [001].  相似文献   

4.
A u.v.–vis spectrophotometric study of the adduct formation of the nickel(II) Schiff base complexes,([NiL]) where L = [3-methoxysalophen, N,N′-bis(3-methoxysalicylidene)-1,2-phenylenediimine] (1), [4-methoxysalophen, N,N′-bis(4-methoxysalicylidene)-1,2-phenylenediimine] (2), [5-methoxysalophen, N,N′-bis(5-methoxysalicylidene)-1,2-phenylenediimine] (3) and [Salophen, [N,N′-bis(salicylaldehydo)-1,2-phenylenediimine] (4) as donors with R2SnCl2 (R = methyl, phenyl and n-butyl) as acceptors have been investigated in chloroform, as solvent. Adducts have been characterized by 1H, 13C and 119Sn NMR, IR and electronic spectroscopy and CHN elemental microanalysis. The formation constants and the thermodynamic free energies were measured using u.v.–vis spectrophotometry titration for 1:1 adduct formation at various temperatures (T = 278 to 308 K). The trend of the adduct formation of the nickel Schiff base complexes with a given tin acceptor decreases as follows:
and
The trend of the reaction of R2SnCl2 acceptors toward a given nickel Schiff base complex is as follows:
  相似文献   

5.
The apparent molar volumes and viscosities of N,N′-bis(salicylaldehyde)-1,3-diaminopropane Schiff base (Salpr) have been determined in ionic liquid {1-pentyl-3-methylimidazolium bromide ([PnMIm]Br)} + N,N-dimethylformamide (DMF) solutions at 298.15 K from density and viscosity measurements using a vibrating tube densimeter and übbelohde type viscometer, respectively. These data have been used to calculate standard partial molar volumes, Vf 0V_{\phi} ^{0}, transfer partial molar volumes, Δtr V 0, and viscosity B-coefficients of the solutions. The transfer partial molar volumes are negative, and decrease with increasing the concentration of ionic liquid for all of the investigated solutions. It found that this ionic liquid interacts strongly with the Schiff base (Salpr) and has desolvation effect on the Schiff base molecules.  相似文献   

6.
The hitherto unknown complexes, [M2(CO)6(μ-CO)(μ-L)], [M = Cr; 1, Mo; 2, W; 3] and [M2(CO)6(μ-CO)(μ-L′)], [M = Cr; 4, Mo; 5, W; 6] have been synthesized by the photochemical reactions of photogenerated intermediate, M(CO)5THF (M = Cr, Mo, W) with thio Schiff base ligands, N,N′-bis(2-aminothiophenol)-1,4-bis(2-carboxaldehydephenoxy)butane (H 2 L) and N,N′-bis(2-aminothiophenol)-1,7-bis(2-formylphenyl)-1,4,7-trioxaheptane (H 2 L′). The complexes have been characterized by elemental analysis, LC-mass spectrometry, magnetic studies, FT-IR and 1H NMR spectroscopy. The spectroscopic studies show that H 2 L and H 2 L′ ligands are converted to benzothiazole derivatives, L and L′ after UV irradiation and coordinated to the central metal as bridging ligands via the central azomethine nitrogen and sulphur atoms in 1–6.  相似文献   

7.
Two macrocyclic dinuclear complexes, [Cu2L1](PF6)2 and [Cu2L2](ClO4)2, were synthesized by cyclo-condensation between N,N′-bis(3-formyl-5-methylsalicylidene)ethylenediimine or N,N′- bis(3-formyl-5-n-butylsalicylidene)ethylenediimine and ethylenediamine in the presence of Cu2+ ions. The crystal structures of the complexes were studied. The variable-temperature magnetic susceptibilities and cyclic voltammograms of the complexes were measured. The magnetic and electrochemical properties of the complexes were discussed. The results show that the complexes display very strong antiferromagnetic exchanges and that all copper(II) complexes undergo a one-electron transfer process.  相似文献   

8.
The Schiff base N,N-bis(2-hydroxy-3-methoxyphenylmethylidene)-2,6-pyridinediamine has been synthesized and characterized in the solid state and in solution using X-ray analysis, IR, UV/Vis, and NMR spectroscopy. Crystal data: C21H19N3O4, M r = 377.39, orthorhombic, space group Pnc2, a = 4.9288(8), b = 8.8873(19), c = 20.870(5) Å, V = 914.19(20) Å3, Z = 2, R = 0.0387, R w = 0.0530, 1845 independent reflections, 778 with I > 2(I). There are two intramolecular hydrogen bonds O—H-N between the hydroxyl and imino groups of 2.622(3) Å. The enolimine form is found in the solid state and is also the predominant tautomeric form in solution. Comparison of the title compound with the structurally related N,N-bis(salicylidene)-2,6-pyridinediamine and N,N-bis(salicylidene)-2,3-pyridinediamine is given.  相似文献   

9.
The solvento species obtained by the treatment of cis-RuCl2(N,N-L)2 [L = di-2-pyridyl sulfide (dps), di-2-pyrimidyl sulfide (dprs)] with AgPF6, reacted with dithioethers L′ [L′ = 2,6-bis(2-pyridylthiomethyl)pyridine (pytmp), 2,6-bis(2-pyrimidylthiomethyl)pyridine (prtmp) and 2,6-bis{2-(4-methyl)pyrimidylthiomethyl} pyridine (mprtmp)] to afford the compounds [Ru(N,N-L)2(N,S-L′)][PF6]2. The 1H NMR spectra indicate that L′ is chelated through S and N atoms with the formation of a four-membered ring. As a consequence, the ruthenium and sulfur atoms are stereogenic centers with ∆ and Λ and (R) and (S) configurations, respectively. NMR spectra, at low temperatures, show that two invertomers, of similar abundance, as enantiomeric couples ∆S, ΛR and ∆R, ΛS are present. In the methylene region, four AB systems are observed that in both the species contain two non-equivalent methylene groups. Variable-temperature NMR spectra and EXSY experiments show that the sulfur inversion produces an exchange between the invertomers. The one-dimensional band-shape analysis of the exchanging methylene signals showed that the energy barriers for the process are in the 43–52 kJ mol−1 range. The possible mechanisms of the sulfur inversion are discussed.  相似文献   

10.
Four Schiff base ligands, salabza-H2 = N,N′-bis(salicylidene)-2-aminobenzylamine, were synthesized by condensation of one mole of 2-aminobenzylamine and two moles of salicylaldehyde and/or two moles of substituted salicylaldehyde (5-OMe, 5-Br, 5-NO2). All the four Schiff bases and their Mn(II), Co(II), Cu(II) and Zn(II) complexes are characterized by UV-Vis, FT-IR, 1H NMR spectroscopy, mass spectrometry and elemental analysis. The formation constants and the Gibbs free energies were measured spectrophotometrically for 1:1 complexes in methanol in constant ionic strength (I = 0.1 mol dm−3 NaClO4) and at 25°C. The data refinement was carried out with the SQUAD program. The trend of formation constants of H2L1 with M(II) follows the order: Mn(II) (3.97) < Zn(II) (4.30) < Co(II) (4.89) < Cu(II) (5.73)  相似文献   

11.
The self-assembled formation of dinuclear lanthanide salicylaldimines is proved by the X-ray diffraction analysis of europium and gadolinium nitrate complexes containing N,N′-bis(salicylidene)-4-methyl-1,3-phenylenediamine (H2L). The [Eu2(H2L)2(μ-H2L)2(NO3)6] complex, isostructural with the gadolinium complex, displays nine-coordinate distorted tricapped trigonal prism geometry with a different coordination mode of four undeprotonated salicylaldimines, which act as terminal monodentate and μ-bridging ditopic ligands using exclusively the oxygens as donor atoms with the nitrogen atoms not being involved in the coordination environment. These complexes along with similar lanthanum, erbium, thulium, and lutetium complexes were prepared in situ in a one-step metal promoted condensation reaction between salicylaldehyde and 4-methyl-1,3-phenylenediamine in the presence of lanthanide nitrates. They were isolated and characterized by microanalysis and spectroscopic (IR, ESI–MS, UV–Vis, and 1H NMR) data with reference to the preformed N,N′-bis(salicylidene)-4-methyl-1,3-phenylenediamine, which was obtained separately and structurally determined by single crystal X-ray analysis.  相似文献   

12.
Co(II), Ni(II), Cu(II) and Cd(II) chelates with 1-aminoethylidenediphosphonic acid (AEDP, H4L1), α-amino benzylidene diphosphonic acid (ABDP, H4L2), 1-amino-2-carboxyethane-1,1-diphosphonic acid (ACEDP, H5L3), 1,3-diaminopropane-1,1,3,3-tetraphosphonicacid (DAPTP, H8L4), ethylenediamine-N,N′-bis(dimethylmethylene phosphonic)acid (EDBDMPO, H4L5), O-phenylenediamine-N,N′-bis(dimethyl methylene phosphonic)acid (PDBDMPO, H4L6), diethylene triamine-N,N,N′,N′,NN″-penta(methylene phosphonic)acid (DETAPMPO, H10L7) and diethylene triamine-N,N″-bis(dimethyl methylene phosphonic)acid (DETBDMPO, H4L8) have been synthesised and were characterised by elemental and thermal analyses as well as by IR, UV–VIS, EPR and magnetic measurements. The first stage in the thermal decomposition process of these complexes shows the presence of water of hydration, the second denotes the removal of the coordinated water molecules. After the loss of water molecules, the organic part starts decomposing. The final decomposition product has been found to be the respective MO·P2O5. The data of the investigated complexes suggest octahedral geometry with respect to Co(II) and Ni(II) and tetragonally distorted octahedral geometry with respect to Cu(II). Antiferromagnetism has been inferred from magnetic moment data. Infrared spectral studies have been carried out to determine coordination sites.  相似文献   

13.
Trifluoromethoxy functionalized copper(II) Schiff base complexes N,N′-bis(5-trifluoromethoxysalicylaldehyde)cyclohexanediiminatodiaquacopper(II) and N,N′-bis(5-trifluoromethoxysalicylaldehyde)phenylenediiminatocopper(II) were synthesized and characterized. Thermal decompositions of the synthesized complexes were studied by thermogravimetry in order to evaluate their thermal stability and thermal decomposition pathways. Three similar decomposition steps occurred for the two copper complexes. Mass losses and evolved gasses were characterized by TG/DTA-MS. Kinetic parameters were calculated and the results showed that the values obtained are comparable.  相似文献   

14.
The standard (p 0=0.1 MPa) molar enthalpies of formation, at T=298.15 K, in the gaseous phase, for three tetradentate Schiff bases involving a N2O2 set, N,N’-bis(salicylaldehydo)cyclohexanediimine (H2salch), N,N’-bis(acetylacetone)cyclohexanediimine (H2acacch) and N,N’-bis(benzoylacetone)cyclohexanediimine (H2bzacch), were determined from their enthalpies of combustion and sublimation, obtained by static bomb calorimetry in oxygen and by the Knudsen effusion technique, respectively. The results are compared with identical parameters for related compounds previously studied, resulting from the condensation of salicylaldehyde or β-diketone with aliphatic diamines.  相似文献   

15.
Summary The kinetics of the reaction between H2O2 and some Schiff base complexes of MnIII have been investigated in both aqueous and micellar sodium dodecyl sulphate (SDS) solution. The reaction rate is first order in both H2O2 and [complex], and inversely proportional to [H+]. The second-order rate constant increases in the sequence [Mn(salophen)(OAc)] > [Mn(salen)(OH2)]-ClO4 > [Mn(salen)(OAc)]H2O, where salen = N,N-bis-(salicylidene)ethylenediamine and salophen = N,N-bis-(salicylidene)-o-phenylenediamine. At SDS concentrations below the critical micellar concentration, there is almost no effect on the rate of reaction whereas at higher concentrations the reaction rate increases slightly. A mechanism involving MnII and a peroxo intermediate is proposed.  相似文献   

16.
The complexes were synthesized by the reaction between sodium salt of p-aminosalicylic acid (PAS) and Cu(II) for 1 and corresponding ethylenediamine (en) or its derivatives for 26. The complexes were characterized by using elemental analyses, FT-IR, UV–Vis, magnetic moment measurements, and thermal analyses techniques. In complex 1[Cu2(PA)4(H2O)2], two Cu(II) ions were found as bridged by four μ-O:O′ p-aminosalicylato (PA) ligands, forming a cage structure, and two aqua ligands to form dinuclear square-pyramidal geometry around Cu(II) ions. In the complexes 26, the PA (anionic form of p-aminosalicylic acid) coordinated to Cu(II) ions as monodentate manner by using its oxygen atom of deprotonated carboxylic acid and ethylenediamine derivatives coordinated to the Cu(II) ions in bidentate manner to form mononuclear octahedral complexes [Cu(PA)2(L)2] (L = ethylendiamine, N,N-dimethylethylendiamine, N,N′-dimethylethylendiamine, N,N,N′,N′-tetramethylethylendiamine, and 1,3-propanediamine, for complexes 2, 3, 4, 5, and 6, respectively). In all the complexes OH and NH2 groups of PA ligands were not coordinated to metals.  相似文献   

17.
Oximation of indoles having a methoxycarbonylamino group on C5 and an acyl group on C3 with hydroxylamine hydrochloride in the presence of pyridine gave the corresponding oximes. The reduction of the 3-C=O group with sodium tetrahydridoborate in the presence of sodium hydroxide was accompanied by removal of the methoxycarbonyl group at the pyrrole nitrogen atom with formation of racemic alcohols. 1,4-Addition of 1-(pyridin-3-yl)butane-1,3-dione to dimethyl 1,4-benzoquinone diimine N,N′-dicarboxylate in dioxane in the presence of sodium methoxide, followed by heating in boiling 22% hydrochloric acid, afforded methyl 2-methyl-5-(methoxycarbonylamino)-3-(pyridin-3-ylcarbonyl)-1H-indole-1-carboxylate. 3-(Dimethylamino)-1-(4-methyl-1,2,5-oxadiazol-3-yl)prop-2-en-1-one reacted with N,N′-bis(methoxycarbonyl)- and N,N′-bis(phenylsulfonyl)-1,4-benzoquinone diimines in methylene chloride and acetic acid, respectively, in the presence of BF3 · Et2O to produce indoles having a 1,2,5-oxadiazolylcarbonyl group on C3.  相似文献   

18.
The new tetradentate symmetrical (2R,2′S)-1,1′-piperazine-1,4-diyldipropane-2-thiol) (L1), (2S)-1-[bis(2-aminoethyl)amino]propan-2-ol) (L2), and 2-{(E)-[((1R,2S)-2-{[(1Z)-(2-hydroxy phenyl)methylene]amino}cyclohexyl)imino]methyl}phenol (L3) ligands were synthesized and characterized on the basis of FT-IR, 1H, 13C NMR, EI mass, and elemental analysis. Three commercially available ligands, (2,2′-[ethane-1,2-diylbis(thio)]diethanol (L4), 2,2′-dithiodiethanenamine (L5), and (2,2′-[ethane-1,2-diyldi(imino)] diethanol (L6), were also studied. Pt(II) complexes were characterized by FTIR, elemental analysis and thermal methods. Thermal behaviors of these complexes were investigated in the range 10–1000 °C. Magnetic properties were also studied, and the all complexes were found to be diamagnetic. The structures consist of the monomeric units in which the Pt(II) atoms exhibit square planar geometry. N,N′-bis(salicylidene)-1,2-cyclohexane has been synthesized and characterized by X-ray single crystal diffraction measurement. The ligand crystallizes in monoclinic crystal system and space group, Cc.  相似文献   

19.
Summary. The new zinc complex of the N,N′-bis(salicylidene)-4-methyl-1,3-phenylenediamine ligand as a product of the [2 + 1] Schiff base condensation process was synthesized in the one-step metal-promoted reaction between salicylaldehyde and 4-methyl-1,3-phenylenediamine in ethanol in the presence of zinc chloride. The two potentially tetradentate N2O2 Schiff bases function as neutral monodentate ligands involving only one oxygen atom in coordination. This rare coordination pattern of a mononuclear salen-type zinc complex was revealed by X-ray crystallography and correlated with spectroscopic characterization.  相似文献   

20.
The new zinc complex of the N,N′-bis(salicylidene)-4-methyl-1,3-phenylenediamine ligand as a product of the [2 + 1] Schiff base condensation process was synthesized in the one-step metal-promoted reaction between salicylaldehyde and 4-methyl-1,3-phenylenediamine in ethanol in the presence of zinc chloride. The two potentially tetradentate N2O2 Schiff bases function as neutral monodentate ligands involving only one oxygen atom in coordination. This rare coordination pattern of a mononuclear salen-type zinc complex was revealed by X-ray crystallography and correlated with spectroscopic characterization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号