首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a method of collecting nanoparticles at a water/hexane interface in a close-packed monolayer film and transferring such films onto a solid substrate, three-dimensional multilayer films of nanoparticles were formed. The packed nanoparticles were gold nanospheres (NS) with a 26 nm diameter or gold nanorods (NR) with a 31 nm diameter and 74 nm length. We investigated variations in the surface enhanced Raman scattering (SERS) intensities from such nanoparticle films as the layer compositions were changed. The films stacked with NR layers generated much higher SERS intensity than those of NS layers. The SERS intensities from both kinds of films increased as the number of layers were increased. However, when the NR layer and NS layer were stacked alternately, SERS intensity varied in a zigzag fashion. It was found that the structure of top layer plays a distinguishable role in generating strong SERS enhancement while the lower layers contribute to SERS with less dependency on structures. Interlayer coupling as well as intralayer coupling was considered in order to explain the observations.  相似文献   

2.
This paper reports an accurate synthesis of surface-enhanced Raman scattering (SERS) active substrates, based on gold colloidal monolayer, suitable for in situ environmental analysis. Quartz substrates were functionalized by silanization with (3-mercaptopropyl)trimethoxysilane (MPMS) or (3-aminopropyl)trimethoxysilane (APTMS) and they subsequently reacted with colloidal suspension of gold metal nanoparticles: respectively, the functional groups SH and NH2 bound gold nanoparticles. Gold nanoparticles were prepared by the chemical reduction of HAuCl4 using sodium tricitrate and immobilized onto silanized quartz substrates. Active substrate surface morphology was characterized with scanning electron microscopy (SEM) measurements and gold nanoparticles presented a diameter in the range 40-100 nm. Colloidal hydrophobic films, allowing nonpolar molecule pre-concentration, were obtained. The surfaces exhibit strong enhancement of Raman scattering from molecules adsorbed on the films. Spectra were recorded for two PAHs, naphthalene and pyrene, in artificial sea-water (ASW) with limits of detection (LODs) of 10 ppb for both on MPMS silanized substrates.  相似文献   

3.
The interaction between amino acids (l-cysteine, l-lysine) and gold nanoparticle layers deposited on ITO glasses was investigated. The citrate capped gold nanoparticles (AuNP) were first deposited as a thin layer onto silanized ITO and subsequently linked with an amino acid, due to strong affinity of thiol and amine groups to gold. The gold nanoparticles had an elliptical shape, with size varying between 7 and 14 nm, as indicated by TEM analysis. After deposition on ITO substrate, the nanoparticles self-assembled into large aggregates with poor contact between, as revealed by AFM. After linking l-cysteine or l-lysine to the surface of nanoparticles layer, a change in morphology occured. A better contact between the gold aggregates boundary developed, which improved the conducting properties of the nanostructured layer. The electrical resistance of the AuNPs layer, obtained from IV measurements, was very high (2.8 × 1013 Ω) and slightly decreased after linking the NPs with amino acids.  相似文献   

4.
This paper describes employing capillary electrophoresis (CE) for the separation of gold colloids in nanometer-size regimes. Adding sodium dodecylsulfate (SDS) surfactant to the running buffer enhances the capability of CE to separate gold nanoparticles. We found that the optimized separation conditions involved SDS (70 mM), 3-cyclohexylamoniuopropanesulfonic acid (CAPS) buffer (10 mM), pH 10.0, and an applied voltage of 20 kV. We propose that the charged surfactants associate onto the surface of the gold nanoparticles and cause a change in the charge-to-size ratio of gold nanoparticle, which is a function of the surface area of nanoparticle and the surfactant concentration of running electrolyte. At high concentrations of the surfactant in the running electrolyte—i.e., when the surface of the gold nanoparticles is fully occupied with SDS—a linear relationship exists between the electrophoretic mobility and nanoparticles having diameters ranging from 5.3 to 38 nm. Based on the results of separating the 5.3 and 19 nm nanoparticles, we estimate that the size resolution (Rs=1.0) is 5.0 nm. The relative standard deviations of the electrophoretic mobilities of the 5.3 and 19 nm gold nanoparticles are 0.97 and 0.54%, respectively.  相似文献   

5.
Highly dispersed gold nanoparticles have been incorporated into the pore channels of SBA-15 mesoporous silica through a newly developed strategy assisted by microwave radiation (MR). The sizes of gold are effectively controlled attributed to the rapid and homogeneous nucleation, simultaneous propagation and termination of gold precursor by MR. Diol moieties with high dielectric and dielectric loss constants, and hence a high microwave activation, were firstly introduced to the pore channels of SBA-15 by a simple addition reaction between amino group and glycidiol and subsequently served as the reduction centers for gold nanoparticles. Extraction of the entrapped gold from the nanocomposite resulted in milligram quantities of gold nanoparticles with low dispersity. The successful assembly process of diol groups and formation of gold nanoparticles were monitored and tracked by solid-state NMR and UV-vis measurements. Characterization by small angle X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicated that the incorporation of gold nanoparticles would not breakup the structural integrity and long-range periodicity of SBA-15. The gold nanoparticles had a narrow size distribution with diameters in the size range of 5-10 nm through TEM observation. The average particles size is 7.9 nm via calculation by the Scherrer formula and TEM measurements. Nitrogen adsorption and desorption isotherms gave further evidence that the employed method was efficient and gold nanoparticles were successfully incorporated into the pore channels of SBA-15.  相似文献   

6.
The high quenching efficiency of metal nanoparticles has facilitated its use as quenchers in molecular beacons. To optimize this system, a good understanding of the many factors that influence molecular beacon performance is required. In this study, molecular beacon performance was evaluated as a function of gold nanoparticle size and its immobilization characteristics. Gold nanoparticles of 4 nm, 15 nm and 87 nm diameter, were immobilized onto glass slides. Each size regime offered distinctive optical properties for fluorescence quenching of molecular dyes that were conjugated to oligonucleotides that were immobilized to the gold nanoparticles. Rigid double stranded DNA was used as a model to place fluorophores at different distances from the gold nanoparticles. The effect of particle size and also the immobilization density of nanoparticles was evaluated. The 4 nm and 87 nm gold nanoparticles offered the highest sensitivity in terms of the change in fluorescence intensity as a function of distance (3-fold improvement for Cy5). The optical properties of the molecular fluorophore was of significance, with Cy5 offering higher contrast ratios than Cy3 due to the red-shifted emission spectrum relative to the plasmon peak. A high density of gold nanoparticles reduced contrast ratios, indicating preference for a monolayer of immobilized nanoparticles when considering analytical performance. Molecular beacon probes were then used in place of the double stranded oligonucleotides. There was a strong dependence of molecular beacon performance on the length of a linker used for attachment to the nanoparticle surface. The optimal optical performance was obtained with 4 nm gold nanoparticles that were immobilized as monolayers of low density (5.7 × 1011 particles cm−2) on glass surfaces. These nanoparticle surfaces offered a 2-fold improvement in analytical performance of the molecular beacons when compared to other nanoparticle sizes investigated. The principles developed in this study would assist in the design of solid phase molecular beacons using gold nanoparticles.  相似文献   

7.
Molecule-coated nanoparticles are hybrid materials which can be engineered with novel properties. The molecular coating of metal nanoparticles can provide chemical functionality, enabling assembly of the nanoparticles that are important for applications, such as biosensing devices. Herein, we report a new self-assembly of core-satellite gold nanoparticles linked by a simple amino acid l-Cysteine for biosensing of Cu2+. The plasmonic properties of core-satellite nano-assemblies were investigated, a new red shifted absorbance peak from about 600 to 800 nm was found, with specific wavelength depending on ratios with assembly of large and small gold nanoparticles. The spectral features obtained using surface-enhanced Raman spectroscopy (SERS) provided strong evidence for the assembly of the Cu2+ ions to the L-Cysteine molecules leading to the successful formation of the core-satellite Cu(l-Cysteine) complex on the gold surfaces. In addition, a linear relationship between the concentration of mediating Cu2+ and absorbance of self-assembled gold nanoparticles (GNPs) at 680 nm was obtained. These results strongly address the potential strategy for applying the functionalized GNPs as novel biosensing tools in trace detections of certain metal ions.  相似文献   

8.
A polyether-type polyurethane (PU) containing silver (Ag) nanoparticles (4-7 nm, 1.51 × 10−3-1.13 × 10−2 wt-%) was prepared by mixing the waterborne PU with the nanoparticle suspension, casting and drying at 60 °C. The Ag nanoparticles were found to be well dispersed in PU. A significant increase in the thermal stability and mechanical properties of the polymer was demonstrated in the nanocomposite PU films, which was believed a result of induced crystallization in the presence of Ag nanoparticles. The biostability was tested in a rat subcutaneous model. After 19 days of implantation, the PU containing Ag showed enhanced biostability and lowered foreign body reaction. The effect of Ag on the stability of the PU polymer was even more remarkable over a wider range of particle contents than that of the gold nanoparticles previously studied.  相似文献   

9.
The focus of the study is to compare the antibacterial efficacy of silver nanoparticles (AgNPs) fabricated by exploiting biological (a mangrove plant, Rhizophora apiculata) and chemical means (Glucose). The synthesized nanoparticles were characterised using UV-visible absorption spectrophotometry (UV-vis), Fourier transform Infra-red Spectroscopy (FTIR) and Transmission electron microscopy (TEM). Biologically synthesized silver nanoparticles (BAgNPs) were observed at 423 nm with particle sizes of 19-42 nm. The chemically synthesized silver nanoparticles (CAgNPs) showed a maximum peak at 422 nm with particle sizes of 13-19 nm. An obvious superiority of the antibacterial potency of BAgNPs compared to the CAgNPs as denoted by the zone of inhibition (ZoI) was noted when the nanoparticles were treated against seven different Microbial Type Culture Collection (MTCC) strains. The current study therefore elucidates that the synthesized AgNPs were efficient against the bacterial strains tested.  相似文献   

10.
The paper proposes a simple and portable approach for the surface enhanced Raman scattering (SERS) spectroscopy in situ determination of carboxylated single walled carbon nanotubes (SWNTs) in river water samples. The method is based on the subsequent microfiltration of a bare gold nanoparticles solution and the water sample containing soluble carbon nanotubes by using a home-made filtration device with a small filtration diameter. An acetate cellulose membrane with a pore size of 0.2 μm first traps gold nanoparticles to form the SERS-active substrate and then concentrates the carbon nanotubes. The measured SERS intensity data were closely fit with a Langmuir isotherm. A portable Raman spectrometer was employed to measure SERS spectra, which enables in situ determination of SWNTs in river waters. The limit of detection was 10 μg L−1. The precision, for a 10 mg L−1 concentration of carbon nanotubes, is 1.19% intra-membrane and 10.5% inter-membrane.  相似文献   

11.
The Raman spectra of Li0.5Co0.1Fe2.4O4 nanoparticles have been recorded in the spectral range, 400-800 cm−1 at four different particle sizes. X-ray and TEM measurements were done to determine crystal structure and size of the nanoparticles. X-ray diffraction (XRD) shows that the Li0.5Co0.1Fe2.4O4 nanoparticles have an order phase spinel structure without any impurity. The size of the nanocrystal was calculated through XRD patterns and TEM micrographs and it turns out to be 34-42 nm. The Raman spectra of each size nanoparticles show five Raman bands. The most intense Raman band shows a noticeable asymmetrical feature towards lower wavenumber side. A line shape analysis was performed to get the exact spectral parameters of the Raman bands. The intensity of asymmetrical feature keeps on increasing with decreasing the particle size from 42 nm to 34 nm and finally evolved as a new Raman band. The appearance of new band and its intensity response relative to the intensity of the main Raman band as a function of particle size has been explained in terms of electron-phonon coupling. It was observed that the strength of electron-phonon coupling goes on increasing with reducing the particle size. The red shifting of the Raman bands upon reducing the crystalline size is explained in terms of the lattice expansion, which is well supported by the XRD data.  相似文献   

12.
We discuss the fluorescence and Raman spectra of the amino acid tryptophan (Trp) in the presence of gold nanoparticles in solution and on the surface of highly dispersed silica (aerosil) containing gold nanoparticles (Au-SiO2). The fluorescence of Trp is efficiently quenched in the presence of gold nanoparticles both in solution and on the SiO2 surface. The fluorescence and excitation spectra contain bands for molecular Trp and a charge transfer complex between Trp and the nanoparticles. In the Raman spectra of Trp with gold nanoparticles, considerably enhanced intense vibrations appear for the carboxyl and amino groups and also for the benzene and pyrrole rings. The effect of gold nanoparticles on the Raman spectra of Trp in a heterogeneous system is considerably weakened due to strong light scattering by the dispersed silica.  相似文献   

13.
Liu SP  He YQ  Liu ZF  Kong L  Lu QM 《Analytica chimica acta》2007,598(2):304-311
When gold nanoparticles were being prepared by sodium citrate reduction method, citrate anions self-assembled on the surface of gold nanoparticles to form supermolecular complex anions with negative charges, and protonated raloxifene (Ralo) was positively charged and could bind with the complex anions to form larger aggregates through electrostatic force and hydrophobic effects, which could result in the remarkable enhancement of the resonance Rayleigh scattering intensity (RRS), and the appearance of new RRS spectra. At the same time, the second-order scattering (SOS) and frequency-doubling scattering (FDS) intensities were also enhanced. The maximum wavelengths were located near 370 nm for RRS, 520 nm for SOS, and 350 nm for FDS, respectively. Among them, the RRS method had the highest sensitivity and the detection limit was 5.60 ng mL−1 for Ralo, and its linear range was 0.05-2.37 μg mL−1. A new RRS method for the determination of trace Ralo using gold nanoparticles probe was developed. The optimum conditions of the reaction and influencing factors were investigated. In addition, the reaction mechanism and the reasons for the enhancement of RRS were discussed.  相似文献   

14.
A synthetic method of ordering hydrophilic gold nanoparticles into a close-packed two-dimensional array at a hexane-water interface and subsequent transferring of such structure onto a solid substrate is described. By repeating the transfer process, multilayered gold nanoparticle films are formed without need of linker molecules. Their surface enhanced Raman scattering (SERS) efficiencies are compared as a function of the number of layers. It is shown that both the number of layers and the particle size contribute to SERS phenomenon. Judging from the noticeable dependence of SERS efficiency on the nanometer scale architecture, the close-packed nanoparticle formation at an immiscible interface presents a facile route to the preparation of highly active and relatively clean SERS substrates by controlling both the particle size and the film thickness. Among the investigated samples, the gold nanoparticle film assembled with quintuple layers of 30 nm diameter particles showed the maximum SERS efficiency.  相似文献   

15.
Natural rubber nanocomposites with SiC nanoparticles and carbon nanotubes   总被引:1,自引:0,他引:1  
Single-walled carbon nanotubes (SWNTs) and SiC nanoparticles were dispersed in natural rubber (NR) polymer solution and subsequently evaporated the solvent to prepare NR nanocomposites. Using this technique, nanoparticles can be better dispersed in the NR matrix. The influence of nano-fillers on the mechanical properties of the resulting nanocomposites was quantified.Mechanical test results show an increase in the initial modulus with nanoscale reinforcements for up to 50% strain compared to pure NR. The modulus and strength of natural rubber with 1.5% SiC nanoparticles appear to be superior to those of SWNTs with the same filler content. In addition to mechanical testing, these nanocomposites were studied using the SEM and Raman spectroscopy techniques in order to understand the morphology of the resulting system and the load transfer mechanism, respectively. The Raman spectrum of the SWNT/NR system is characterized by a strong band at 1595 cm−1 (G mode—C-C stretching) and other two bands at 1300 cm−1 (D mode-disorder induced) and 2590 cm−1 (D* band). A shift of the 2590 cm−1 Raman band to the lower wavenumber was observed after subjecting SWNT/NR sample to cyclic stress testing. Ageing SWNT/NR specimen in distilled water for 30 days also provided a similar result. The Raman shift in aged samples indicates internal stress transfer from the natural rubber matrix to the SWNTs implying the existence of bonding at the interface.  相似文献   

16.
Poly(o-phenylenediamine) (PoPD) hollow spheres (ca. 800 nm in outer diameter) were synthesized by a simple solution route using ammonium persulfate (APS) as the oxidizing agent, whereas PoPD nanofibers (0.5-2 μm in width and more than 100 μm in length) and gold nanoparticles (200-500 nm) were obtained when changing the oxidizing agent of APS to chlorauric acid (HAuCl4). The chemical structures of PoPD hollow spheres and nanofibers were characterized by FTIR and XRD spectra. When using HAuCl4 as the oxidizing agent, the products of PoPD nanofibers and gold nanoparticles could be separated by chemical methods. The monomer droplets were proposed to act as template to the formation of polymer hollow spheres while the oriented growth of polymer nanofibers might be catalyzed by gold nanoparticles.  相似文献   

17.
Highly dispersed gold nanoparticles within mesoporous thin films (MTFs) have been synthesized through a newly developed controllable strategy, in which (1,4)-bis(triethoxysilyl)propane tetrasufide (BPTS) organosiloxane coupling agent was co-assembled with tetraethyl orthosilicate (TEOS) to form organic groups functionalized mesoporous composite films followed with oxidization, ion-exchange with Au(en)2Cl3 (en: 1,2-ethanediamine) compound and calcination under hydrogen/nitrogen mixing atmosphere. Small-angle X-ray diffraction (XRD) characterization indicated that up to 10 mol% of BPTS could be incorporated into mesoporous hybrid films, and that would not breakup the structural integrity and long-range periodicity. The loaded gold nanoparticles were uniformly distributed due to the molecular level homogenous mixing of the BPTS precursor with TEOS, and its concentration could be controlled via the original ratio of BPTS to TEOS. The nanoparticles had a narrow size distribution with diameters in the size range of 3-7 nm through transmission electron microscopy (TEM) observation and underwent a slight size increase with the higher gold load level. An overall increase in the absorption intensity, a red shift of absorption peak, together with a comparatively narrower bandwidth could be observed at higher gold concentration within composite films from UV-vis spectra. Wide-angle XRD, TEM, X-ray photoelectron spectroscopy (XPS) and UV-vis spectra characterizations all agreed on the fact that the gold loading level could be controlled by the amount of BPTS in the starting sol for preparing MTFs.  相似文献   

18.
Reversibly photo-cross-linkable pH-responsive block copolymer poly(ethylene oxide)-b-poly((2-(diethylamino)ethyl methacrylate-co-4-methyl-[7-(methacryloyl)oxyethyloxy] coumarin)) (PEO-b-P(DEA-co-CMA)) was synthesized via atom transfer radical polymerization (ATRP). Block copolymer nanogels could be easily prepared by first photo-cross-linking of the micelles at pH > 7 and then adjusting the solution to pH < 7. The photo-cross-linking was proved to be reversibly controlled under alternative irradiation of UV light at 365 nm and 254 nm. As a result, the cross-linking degrees and sizes of the nanogels can be easily controlled by alternatively UV light irradiation. Finally, the nanogels can serve as nanoreactors for the synthesis of gold nanoparticles. The protonated DEA units were first coordinated with HAuCl4, and then the electrostatically bounded AuCl4− anions were reduced to gold nanoparticles by NaBH4. The nanogel-supported gold nanoparticles were used in chemical catalysis. The pH-responsive photo-cross-linked nanogels have been characterized using dynamic light scattering, transmission electron microscopy, UV-vis spectra and 1H NMR spectroscopy measurements, respectively.  相似文献   

19.
This paper introduces strategies for enhancement of a surface plasmon resonance (SPR) signal by adopting colloidal gold nanoparticles (AuNPs) and a SiO2 layer on a gold surface. AuNPs on SiO2 on a gold surface were compared with an unmodified gold surface and a SiO2 layer on a gold surface with no AuNPs attached. The modified surfaces showed significant changes in SPR signal when biomolecules were attached to the surface as compared with an unmodified gold surface. The detection limit of AuNPs immobilized on a SPR chip was 0.1 ng mL−1 for the prostate-specific antigen (PSA), a cancer marker, as measured with a spectrophotometer. Considering that the conventional ELISA method can detect ∼10 ng mL−1 of PSA, the strategy described here is much more sensitive (∼100 fold). The enhanced shift of the absorption curve resulted from the coupling of the surface and particle plasmons by the SiO2 layer and the AuNPs on the gold surface.  相似文献   

20.
Aqueous polyethylene oxide (PEO) solutions (2 MDa, 2-5 wt %) with or without citrate passivated Au nanoparticles (5.7×10−7 wt %) have been electrospun, producing fibres with diameters from 290 μm to 55 nm. The incorporation of nanoparticles suppresses the diameter of the fibres and increases the degree of crystallinity. Such nanocomposite fibres are of interest as self-assembled templates for bottom-up fabrication methodologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号