首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single-negative materials based on photonic crystal with multiple defect layers are designed and the free modulation of defect modes is studied. The results show that the multi-defect structure can avoid the interference between the defect states. Therefore, the designed double defect modes in the zero effective-phase gap can be adjusted independently by changing the thickness of different defect layers. In addition, the two tunable defect modes have the omnidirectional characteristics. This multi-defect structure with above-mentioned two advantages has potential applications in modern optical devices such as tunable omnidirectional filters.  相似文献   

2.
We present fabrication and experimental measurement of a series of photonic crystal waveguides. The complete devices consist of an injector taper down from 3 μm into a triangular-lattice air-hole single-line-defect waveguide with lattice constant from 410nm to 470nm and normalized radius 0.31. We fabricate these devices on a silicon- on-insulator substrate and characterize them using a t unable laser source over a wavelength range from 1510 nm to 1640nm. A sharp attenuation at photonic crystal waveguide mode edge is observed for most structures. The edge of guided band is shifted about 30nm with the 10nm increase of the lattice constant, We obtain high-efficiency light propagation and broad flat spectrum response of the photonic crystal waveguides.  相似文献   

3.
Two-dimensional photonic crystal slab waveguides on SOI wafer are designed and fabricated. Photonic band gap, band gap guided mode, and index guided mode are observed by measuring the transmission spectra. The experimental results are in good agreement with the theoretical ones.  相似文献   

4.
5.
A photonic quantum-well is constructed by sandwiching a uniform medium between two photonic barriers due to the photonic band gap mismatch, similar to electronic quantum well. The transmission coefficient is calculated by a plane-wave expansion method in combination with multiple-scattering techniques. The transmission peaks indicate that some photonic states exist in a quantized way, satisfying a quantized frequency relation. We also show that the finite photonic potential barrier plays different confined roles on the different photonic levels. The positions and number of the resonant peaks can be artificially tuned by varying the well width. By appropriately choosing the parameters of the well and barrier, a high-quality multichannel filtering can be achieved.  相似文献   

6.
Optical transmission properties of subwavelength planar fractals in terahertz (THz) frequency regime are studied by means of time-domain spectroscopy. The transmission spectra with multiple pass bands and stop bands are observed. The tunable photonic band gaps are realized by changing the angle between the principle axis of planar fractal and the polarization of THz wave. The possible application of the subwavelength optical component is discussed. We attribute the detected transmittance from subwavelength fractals to localized resonances.  相似文献   

7.
邓新华  刘念华 《中国物理快报》2007,24(11):3168-3171
We study the transmission of one-dimensional photonic crystals consisting of single-negative permittivity and single-negative permeability media by using transfer matrix method. A pair of transmission modes is found in the gap. The transmission modes are dependent only on the ratio of the thicknesses of the two alternating layers. The separation of a pair of transmission modes can be tuned by varying the thickness of the defect layer or the ratio of thicknesses of the two alternating layers.  相似文献   

8.
The transmission properties of one-dimensional photonie crystals (1DPCs) containing anisotropic metamaterials are theoretically studied. It is shown that the 1DPCs can possess a similar zero average index (zero-n) gaps, the edges of zero-~ gap are weakly dependent on the incident angles, scale length and the polarization of the electromagnetic wave. When an impurity is introduced, a defect mode appears inside the zeron gap with a very weak dependence on incident angles and sealing. It is found that in such photonic crystals, a transmitted Gaussian pulse with its carrier frequency lying in the lower gap edge, in the defect mode and in the bandgap, can experience a positive or negative group delay and hence a subluminal, ultra.slow or superluminal propagation with small distortions. These properties of the photonic crystals have potential applications in the transfer of information.  相似文献   

9.
We fabricate a photonic crystal microcavity containing Alq3 in a sandwiched structure by the self-assemble method. The angle-dependent photoluminescence (PL) spectra and the variation of the PL lifetime demonstrate the effect of the photonic band gap on the spontaneous emission of Alq3 in the photonic crystals.  相似文献   

10.
A highly efficient W3 Y-branch filter in a two-dimensional photonic crystal slab with triangular lattice of air holes is designed and fabricated, and its transmission properties are measured. By accurately adjusting the size of the resonant cavities, the minimum wavelength spacing of 7 nm between two channels is realized. The corresponding resonant wavelengths of the two cavities agree well with the calculated ones. This implies that this kind of fiIter may be promising in integrated wavelength division multiplexing system.  相似文献   

11.
A two-dimensional photonic crystal heterostructure, which consists of two photonic crystals of a square lattice of circular columns with reverse dielectric configurations, is proposed. Photonic band gap properties are calculated using a plane-wave method and the transmission spectra are obtained. After optimization, the relative width of the complete band gap reached 13.8% based on the simple unit-cell shape and crystal lattice. The photonic crystal heterostructure opens up new ways of engineering photonic band gap materials and designing photonic crystal devices.  相似文献   

12.
It has recently been predicted that a conical singularity (=Dirac point) in the band structure of a photonic crystal produces an unusual 1/L scaling of the photon flux transmitted through a slab of thickness L. This inverse-linear scaling is unusual, because it is characteristic of radiative transport via diffusion modes through a disordered medium - while here it appears for propagation of Bloch modes in an ideal crystal without any disorder. We present a quantitative numerical test of the predicted scaling, by calculating the scattering of transverse-electric (TE) modes by a two-dimensional triangular lattice of dielectric rods in air. We verify the 1/L scaling and show that the slope differs by less than 10% from the value predicted for maximal coupling of the Bloch modes in the photonic crystal to the plane waves in free space.  相似文献   

13.
We demonstrate a single-exposure holographic fabrication of two-dimensional photonic crystal with round- cornered triangular 'atoms' arranged in a triangular lattice. Simulation results show that double absolute photonic band gaps exist in this structure. Our experimental results show that holographic lithography can be used to fabricate photonic crystals not only with various lattice structures but also with various kinds of structures of the atoms, to obtain absolute band gaps or a particular band gap structure. Furthermore, the single-exposure holographic method not only makes the fabrication process simple and convenient but also makes the structures of the atoms more perfect.  相似文献   

14.
We demonstrate a photonic crystal hetero-waveguide based on silicon-on-insulator (SOI) slab, consisting of two serially connected width-reduced photonic crystal waveguides with different radii of the air holes adjacent to the waveguide. We show theoretically that the transmission window of the structure corresponds to the transmission range common to both waveguides and it is in inverse proportion to the discrepancy between the two waveguides. Also the group velocity of guided mode can be changed from low to high or high to low, depending on which port of the structure the signal is input from just in the same device, and the variation is proportional to the discrepancy between the two waveguides. Using this novel structure, we realize flexible control of transmission window and group velocity of guided mode simultaneously.  相似文献   

15.
Negative refraction and imaging properties of the electromagnetic wave through a two-dimensional photonic crystal (PC) slab, which consists of a square lattice of elliptical dielectric rods immersed in the air background, is studied by the plane-wave expansion method and the finite-difference time-domain method. A point source placed in the vicinity of the PC slab can form a good-quality image spot through the PC slab for the incident frequencies within the second photonic band. The calculated result also shows that negative refraction occurs in this kind of PC slab.  相似文献   

16.
A polarizing beam splitter (PBS) and a non-polarizing beam splitter (NPBS) based on a photonic crystal (PC) directional coupler are demonstrated. The photonic crystal directional coupler consists of a hexagonal lattice of dielectric pillars in air and has a complete photonic band gap. The photonic band structure and the band gap map are calculated using the plane wave expansion (PWE) method. The splitting properties of the splitter are investigated numerically using the finite difference time domain (FDTD) method.  相似文献   

17.
We numerically investigate the quality factors of two-dimensional (2D) photonic crystal (PC) microcavities using an auxiliary differential equations (ADE) technique in the context of finite-difference time-domain (FDTD) method. The microcavities are formed by point defects in the air hole lattice hexagonally patterned in ZnO (zinc oxide) matrix. The quality factors of these microcavities are limited primarily by the absorption of the background dielectric. We show that the ratio between the quality factors of microcavities in lossy and lossless background dielectric depends on the overlap between the field of cavity modes and the absorbing background dielectric in addition to the magnitude of absorption. These results will be helpful when designing and optimizing photonic crystal microcavities formed in lossy medium.  相似文献   

18.
We propose an integrative biochemical sensor utilizing the dip in the transmission spectrum of a normal singleline defect photonic crystal (PC) waveguide, which has a eontra-directional coupling with another PC waveguide. When the air holes in the PC slab are filled with a liquid analyte with different refractive indices, the dip has a wavelength shift. By detecting the output power variation at a certain fixed wavelength, a sensitivity of 1.2 × 10^-4 is feasible. This structure is easy for integration due to its plane waveguide structure and omissible pump source. In addition, high signal to noise ratio can be expected because signal transmits via a normal single-line defect PC waveguide instead of the PC hole area or analyte.  相似文献   

19.
In this paper, we propose that the “anomalous” optical response exhibited by GaP and InP infiltrated opals is due to the peculiar morphology shown by these materials when grown within the pores. In order to account for their optical response, we propose a new structural model consisting of a network of high dielectric spheres located in the pores of the bare opal, interconnected by cylinders of the same material. A fair agreement between the theoretical predictions using this model and the experimental measurements has been found. We also show that the inverse structure presents very interesting optical properties.  相似文献   

20.
A new transport regime of photon in two-dimensional photonic crystal near the Dirac point has been demonstrated by exact numerical simulation. In this regime, the conductance of photon is inversely proportional to the thickness of sample, which can be described by Dirac equation very well. Both of bulk and surface disorders always reduce the transmission, which is in contrast to the previous theoretical prediction that they increase the conductance of electron at the Dirac point of graphene. However, regular tuning of interface structures can cause the improvement of photon conductance. Furthermore, large conductance fluctuations of photon have also been observed, which is similar to the case of electron in graphene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号