首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王兆华  魏志义  张杰 《物理学报》2005,54(3):1194-1199
建立了一台频率分辨偏振光学开关(PG FROG)法飞秒脉冲测量装置,利用该装置对“极光Ⅱ号”飞秒激光放大系统进行了测量.在利用偏振光学开关法测得的时域和频域信号基础上,结合对信号光强度分布的计算机迭代处理,得到了有关飞秒激光电场、光谱及其相位的信息;并且对系统工作在不同状态时的激光脉冲进行了测量和比较分析,给出了有关该系统较详细的电场、光谱、相位以及啁啾状况.结果显示,当系统工作在零啁啾附近时,该系统输出的激光脉冲的电场、光谱和相位分布较规则,相位起伏较小;当系统偏离零啁啾状态时,虽然电场和光谱变化不很明显,但相位分布变化剧烈. 关键词: 频率分辨偏振光学开关(PG FROG)法 飞秒激光 自相关  相似文献   

2.
黄杭东  滕浩  詹敏杰  许思源  黄沛  朱江峰  魏志义 《物理学报》2019,68(7):70602-070602
超宽光谱的飞秒脉冲测量一直是超快激光领域的重要研究方向之一.常规的飞秒脉冲自相关方法是通过测量自相关倍频信号来获得,而倍频信号具有波长选择性,不同中心波长的飞秒脉冲测量需要更换不同的倍频晶体,十分不方便.因此,提出了一种改进型的瞬态光栅频率分辨光学开关(TG-FROG)方法用于测量飞秒脉冲.该方法结合四波混频和频率分辨光学开关方法,其基本过程是将待测脉冲分为三束,其中两束脉冲经过精密的延时控制并聚焦在光学介质上达到时空重合,利用三阶非线性效应产生稳定的瞬态光栅作为开关光;另一束脉冲作为探测光与产生的瞬态光栅进行相互作用产生一个信号光,使用光谱仪对该信号光的光谱与延迟时间进行测量,并通过反演迭代算法处理而获取待测飞秒脉冲的光谱与电场信息.该方法只需要待测光的功率密度达到三阶非线性效应就可以实现测量,因此可以应用于任意中心波长的飞秒脉冲测量.利用该方法对中心波长分别为800 nm, 400 nm的飞秒脉冲,以及超连续亚10 fs的周期量级超宽光谱飞秒脉冲进行了测量,并与常规的干涉自相关仪器测量结果进行了比较,所得测量结果基本一致.实验结果表明,建立的基于TG-FROG方法对不同中心波长,不同脉冲宽度的飞秒脉冲测量是十分有效的.  相似文献   

3.
飞秒激光脉冲的谐波频率分辨光学开关法测量研究   总被引:6,自引:1,他引:6       下载免费PDF全文
王兆华  魏志义  滕浩  王鹏  张杰 《物理学报》2003,52(2):362-366
建立了一台谐波频率分辨光学开关法(FROG)飞秒脉冲测量装置,利用该装置进行了掺钛蓝宝石飞秒激光脉冲的测量研究.在二次谐波自相关测得的时域和频域信号基础上,结合对信号光强度分布的计算机迭代处理,得到了有关飞秒激光电场、光谱及其相位的信息,所得脉宽与干涉测量的结果基本一致. 关键词: 频率分辨光学开关法(FROG) 迭代计算 飞秒激光 自相关  相似文献   

4.
A novel wavelength-conversion configuration based on four-wave mixing in an optical fiber has been used to generate a frequency-resolved optical gating (FROG) trace identical to that obtained from second-harmonic generation (SHG). The use of an optical fiber waveguide permits enhanced measurement sensitivity compared with that of conventional SHG-FROG and has been used for complete characterization of 1-mW peak-power picosecond pulses at 1.55 microm from an unamplified semiconductor laser diode gain switched at 10 GHz.  相似文献   

5.
We describe a cross-correlation-based frequency-resolved optical gating (XFROG) technique for simultaneously measuring the amplitude and phase of two ultrashort pulses that have different wavelengths but are derived from a common mode-locked oscillator. A measurement is presented in which 4.0-mum mid-IR pulses from a synchronously pumped femtosecond optical parametric oscillator (OPO) are characterized by mixing with the 770-nm OPO pump pulses. Details of the pulse-retrieval algorithm are included, together with examples of pulse data retrieved from the experimentally measured XFROG trace.  相似文献   

6.
We demonstrate polarization-insensitive ultralow-power second-harmonic generation frequency-resolved optical gating (FROG) measurements with a fiber-pigtailed, aperiodically poled lithium niobate waveguide. By scrambling the polarization much faster than the measurement integration time, we eliminate the impairment that frequency-independent random polarization fluctuations induce in FROG measurements. As a result we are able to retrieve intensity and phase profiles of few hundred femtosecond optical pulses with 50 MHz repetition rates at 5.2 nW coupled average power without control of the input polarization.  相似文献   

7.
We performed what we believe are the first practical full-temporal-characterization measurements of ultrashort pulses from a free-electron laser (FEL). Second-harmonic-generation frequency-resolved optical gating (FROG) was used to measure a train of mid-IR pulses distorted by a saturated water-vapor absorption line and showing free-induction decay. The measured direction of time was unambiguous because of prior knowledge regarding free-induction decay. These measurements require only 10% of the power of the laser beam and demonstrate that FROG can be implemented as a pulse diagnostic simultaneously with other experiments on a FEL.  相似文献   

8.
Yellampalle B  Kim K  Taylor AJ 《Optics letters》2007,32(24):3558-3560
We construct field shapes with distinct amplitude profiles that have nearly identical second-harmonic generation frequency-resolved optical gating (SHG FROG) traces. Although such fields are not true mathematical ambiguities, they result in experimentally indistinguishable FROG traces. These fields are neither time-reversed copies nor pulselets with a mere relative phase difference, which are well known nontrivial ambiguities for SHG FROG. We also show that for certain example fields, second-order interferometric autocorrelation is more sensitive to the pulse shape than is SHG FROG.  相似文献   

9.
10.
We present an experimental observation of the dynamics of an initially chirped optical soliton at 1.55microm that is propagating through a single-mode optical fiber, using frequency-resolved optical gating (FROG). FROG permits observation of both the amplitude and the phase profiles of ultrashort pulses, providing complete information on the pulse evolution. The features that are detected, which include what is believed to be the first experimental observation of phase slips, are in quantitative agreement with numerical simulations that employ the nonlinear Schr?dinger equation.  相似文献   

11.
Schucan GM  Fox AM  Ryan JF 《Optics letters》1998,23(9):712-714
We generated pulsed quadrature-squeezed light by cross-phase modulation in single-crystal hexagonal CdSe at wavelengths of 1.4 to 1.55mum . We measured 0.4-dB squeezing (0.7 dB is inferred at the crystal) with 100-fs laser pulses. The wavelength and the intensity dependence, as well as variations in the local oscillator configuration, are examined. At higher intensities squeezing is shown to deteriorate owing to competing nonlinear processes.  相似文献   

12.
The technique of second-harmonic generation frequency-resolved optical gating is applied to measure the intensity and the phase of 4.5-fs pulses resulting from the fiber-compressed output of a cavity-dumped Ti:sapphire laser. Characterization of even shorter optical pulses by this method should also be feasible.  相似文献   

13.
To expand the span of the optical frequency comb (OFC), we generated the second harmonics of an OFC at 1.55microm , using a multiperiod periodically poled lithium niobate (PPLN) crystal. A coupled-cavity OFC generator with an average output power of 0.2 mW was amplified and expanded with a fiber amplifier and a dispersion-flattened fiber. The fundamental OFC average power and span were 100 mW and 45 THz, respectively. The second-harmonic comb's span was 3.2 THz; however, we tuned the center frequency over 30 THz by changing the poling period. We also demonstrated that the second-harmonic comb can be used for frequency-difference measurement.  相似文献   

14.
Femtosecond extreme ultraviolet (XUV) pulses were fully characterized for the first time by using a newly developed cross-correlation frequency-resolved optical gating (FROG) technique in the XUV region. This method utilizes laser-assisted two-photon ionization as a nonlinear optical process. Near-infrared pulses characterized by FROG were used as a reference. The amplitude and phase of XUV pulses with a pulse duration of 10 fs were found to be in good agreement with a model analysis, taking into account phase modulation by ionization, self-phase modulation, and the atomic dipole phase.  相似文献   

15.
For the first time to our knowledge, we demonstrate a collinear frequency-resolved optical gating (FROG) technique that is suitable for the characterization of sub-10-fs pulses. This FROG variant does not suffer from geometrical blurring effects, and a temporal resolution of 1 fs can be achieved without the need for additional aperturing. The apparatus is suitable for subnanojoule pulse energies. We apply this technique for the full characterization of pulses from a Kerr-lens mode-locked Ti:sapphire laser.  相似文献   

16.
We retrieve intensity and phase profiles of 280 fs, 50 MHz optical pulses with 124 aJ coupled pulse energy (960 photons) by second-harmonic generation (SHG) frequency-resolved optical gating, using aperiodically poled LiNbO3 waveguides. The strong nonlinear interaction that is due to confinement within the micrometer-sized waveguide structure and the linearly chirped poling period contribute, respectively, to high SHG efficiency and broad phase-matching bandwidth. The achieved sensitivity is 2.7 x 10(-6) mW2, improving on the previous record for self-referenced complete pulse characterization by 5 orders of magnitude.  相似文献   

17.
飞秒激光成丝超连续辐射具有高强度和高时空相干性等优点,作为一种超宽带光源在很多领域都具有广泛的应用前景.本文提出一种结合微透镜阵列的空间调制和基于液晶空间光调制器的时域整形的飞秒激光脉冲整形方式,利用基于遗传算法的反馈优化控制,实现了飞秒激光在熔融石英中成丝产生的超连续辐射强度的调制,得到了在一定范围内光谱强度可控的超连续辐射光谱;光谱的能量密度可以从0.03μJ/nm调制到0.09μJ/nm,其能量密度变化达到了初始值的3倍.计算了典型迭代代数对应的整形脉冲时域包络,分析了超连续光谱随迭代代数的演化趋势,结果表明,脉冲包络的峰值强度和波形分布是影响超连续光谱展宽和强度的主要物理原因.  相似文献   

18.
High-energy light pulses that are tunable from 1.1 to 2.6 mum, with a duration as short as 14.5 fs were generated in a type II phase-matching beta-BaB(2)O(4) traveling-wave parametric converter pumped by 18-fs pulses obtained from a Ti:sapphire laser with chirped-pulse amplification, followed by a hollow-fiber compressor.  相似文献   

19.
We demonstrated that molecular-alignment-based cross-correlation frequency resolved optical gating (M-XFROG) could be used for complete characterization of elliptically polarized femtosecond pulses by measuring the orthogonal linear polarization components and the additional polarization projection at 45 degree of the target pulse. The electric field orientation, polarization ellipticity angles, and phase information of the target pulse were also obtained. The transiently aligned air molecules functioned as a linear optical gating function in the measurement processes. The validity and robustness of M-XFROG were confirmed by the comparison between the retrieved optical gating function and measured molecular alignment signal in air.  相似文献   

20.
A background-free, fringe-free form of frequency-resolved optical gating using the third-harmonic signal generated from a glass coverslip is used to characterize 100 fs pulses at the focus of a 0.65 NA objective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号