首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The protozoan parasite Toxoplasma gondii is a representative of apicomplexan parasites that invades host cells through an unconventional motility mechanism. During host cell invasion it forms a specialized membrane-surrounded compartment that is called the parasitophorous vacuole. The interactions between the host cell and parasite membranes are complex and recent studies have revealed in more detail that both the host cell and the parasite membrane contribute to the formation of the parasitophorous vacuole. By using our a new specimen preparation technique that allows three-dimensional imaging of thick-sectioned internal cell structures with high-resolution, low-voltage field emission scanning electron microscopy, we were able to visualize continuous structural interactions of the host cell membrane with the parasite within the parasitophorous vacuole. Fibrous and tubular material extends from the host cell membrane and is connected to parasite membrane components. Shorter protrusions are also elaborated from the parasite. Several of these shorter fine protrusions connect to the fibrous material of the host cell membrane. The elaborate network may be used for modifications of the parasitophorous vacuole membrane that will allow utilization of nutrients from the host cell by the parasite while it is being protected from host cell attacks. The structural interactions between parasite and host cells undergo time-dependent changes, and a fission pore is the most prominent structure left connecting the parasite with the host cell. The fission pore is anchored in the host cell by thick structural components of unknown nature. The new information gained with this technique includes structural details of fibrous and tubular material that is continuous between the parasite and host cell and can be imaged in three dimensions. We present this technique as a tool to investigate more fully the complex structural interactions of the host cell and the parasite residing in the parasitophorous vacuole.  相似文献   

2.
Toxoplasma gondii and other members of the family Apicomplexa have two organelles, in addition to the nucleus, that contain DNA. Herein is reported the separation of the DNA‐carrying organelles from T. gondii tachyzoites, i.e. the mitochondrion and the apicoplast, by CZE. The cells were stained with SYTO9, a dye that exhibit fluorescence when interacting with double stranded nucleic acids (e.g. DNA) and disrupted by nitrogen cavitation. Following careful removal of the heavier cellular material, the remaining lysate was injected on a CE instrument and the DNA‐containing organelles were detected by LIF. The mitochondrion had longer migration time than the apicoplast, and the migration times were comparable in the replicates. This method should potentially also work for other members of the Apicomplexa including Plasmodium falciparum.  相似文献   

3.
Apicomplexan parasites employ complex and unconventional mechanisms for cell locomotion, host cell invasion, and cell division that are only poorly understood. While immunofluorescence and conventional transmission electron microscopy have been used to answer questions about the localization of some cytoskeletal proteins and cell organelles, many questions remain unanswered, partly because new methods are needed to study the complex interactions of cytoskeletal proteins and organelles that play a role in cell locomotion, host cell invasion, and cell division. The choice of fixation and preparation methods has proven critical for the analysis of cytoskeletal proteins because of the rapid turnover of actin filaments and the dense spatial organization of the cytoskeleton and its association with the complex membrane system. Here we introduce new methods to study structural aspects of cytoskeletal motility, host cell invasion, and cell division of Toxoplasma gondii, a most suitable laboratory model that is representative of apicomplexan parasites. The novel approach in our experiments is the use of high resolution low voltage field emission scanning electron microscopy (LVFESEM) combined with two new specimen preparation techniques. The first method uses LVFESEM after membrane extraction and stabilization of the cytoskeleton. This method allows viewing of actin filaments which had not been possible with any other method available so far. The second approach of imaging the parasite's ultrastructure and interactions with host cells uses semithick sections (200 nm) that are resin de-embedded (Ris and Malecki, 1993) and imaged with LVFESEM. This method allows analysis of structural detail in the parasite before and after host cell invasion and interactions with the membrane of the parasitophorous vacuole as well as parasite cell division.  相似文献   

4.
Retrosynthesis of the fully phosphorylated glycosylphosphatidyl inositol (GPI) anchor pseudohexasaccharide 1a led to building blocks 2-6, of which 5 and 6 are known. The formation of pseudodisaccharide building block 2 is based on readily available building block 7, which gave, via derivative 11 and its glycosylation with known donor 12, the desired compound 2. Building block 3, with the required access to all hydroxy groups being permitted, was prepared from mannose in five steps. From a readily available precursor, building block 4 was obtained, which on reaction with 3 gave disaccharide 23. The synthesis of the decisive pseudohexasaccharide intermediate 32 was based on the reaction of 23 with 5, then with 6, and finally with 2. To obtain high stereoselectivity and good yields in the glycosylation reactions, anchimeric assistance was employed. To enable regioselective attachment of the two different phosphorus esters, the 6f-O-silyl group of 32 was first removed and the aminoethyl phosphate residue was attached. Then the MPM group was oxidatively removed, and the second phosphate residue was introduced. Unprotected 1a was then liberated in two steps: treatment with sodium methanolate removed the acetyl protecting groups, and finally, catalytic hydrogenation afforded the desired target molecule, which could be fully structurally assigned.  相似文献   

5.
The quinolone decoquinate (DCQ) is widely used in veterinary practice for the treatment of bacterial and parasitic infections, most notably, coccidiosis in poultry and in ruminants. We have investigated the effects of treatment of Toxoplasma gondii in infected human foreskin fibroblasts (HFF) with DCQ. This induced distinct alterations in the parasite mitochondrion within 24 h, which persisted even after long-term (500 nM, 52 days) treatment, although there was no parasiticidal effect. Based on the low half-maximal effective concentration (IC50) of 1.1 nM and the high selectivity index of >5000, the efficacy of oral treatment of pregnant mice experimentally infected with T. gondii oocysts with DCQ at 10 mg/kg/day for 5 days was assessed. However, the treatment had detrimental effects, induced higher neonatal mortality than T. gondii infection alone, and did not prevent vertical transmission. Thus, three quinoline-O-carbamate derivatives of DCQ, anticipated to have better physicochemical properties than DCQ, were assessed in vitro. One such compound, RMB060, displayed an exceedingly low IC50 of 0.07 nM, when applied concomitantly with the infection of host cells and had no impact on HFF viability at 10 µM. As was the case for DCQ, RMB060 treatment resulted in the alteration of the mitochondrial matrix and loss of cristae, but the changes became apparent at just 6 h after the commencement of treatment. After 48 h, RMB060 induced the expression of the bradyzoite antigen BAG1, but TEM did not reveal any other features reminiscent of bradyzoites. The exposure of infected cultures to 300 nM RMB060 for 52 days did not result in the complete killing of all tachyzoites, although mitochondria remained ultrastructurally damaged and there was a slower proliferation rate. The treatment of mice infected with T. gondii oocysts with RMB060 did reduce parasite burden in non-pregnant mice and dams, but vertical transmission to pups could not be prevented.  相似文献   

6.
Modular syntheses of the glycosylphosphatidylinositol anchors of Toxoplasma gondii using a highly convergent strategy are reported.  相似文献   

7.
FR235222 is a natural tetra-cyclopeptide with a strong inhibition effect on histone deacetylases, effective on mammalian cells as well as on intracellular apicomplexan parasites, such as Toxoplasma gondii, in the tachyzoite and bradyzoite stages. This molecule is characterized by two parts: the zinc-binding group, responsible for the binding to the histone deacetylase, and the cyclic tetrapeptide moiety, which plays a crucial role in cell permeability. Recently, we have shown that the cyclic tetrapeptide coupled with a fluorescent diethyl-amino-coumarin was able to maintain properties of cellular penetration on human cells. Here, we show that this property can be extended to the crossing of the Toxoplasma gondii cystic cell wall and the cell membrane of the parasite in its bradyzoite form, while maintaining a high efficacy as a histone deacetylase inhibitor. The investigation by molecular modeling allows a better understanding of the penetration mechanism.  相似文献   

8.
The use of phenotype-based screens as an approach for identifying novel small molecule tools is reliant on successful protein target identification strategies. Here we report on the synthesis and chemical characterisation of a novel reagent for protein target identification based on a small molecule inhibitor of human cell invasion by the parasite Toxoplasma gondii. A detailed (1)H NMR study and biological testing confirmed that incorporation of an amino-containing functional group into the aryl ring of this inhibitor was possible without loss of biological activity. Interesting chemical reactivity differences were identified resulting from incorporation of the new substituent. The amine functionality was then used to prepare a biotinylated reagent that is central to our current protein target identification studies with this inhibitor.  相似文献   

9.
Biological transformation of organic matter in soil is a crucial factor affecting the global carbon cycle. In order to understand these complex processes, soils must be investigated by a combination of various methods. This study compares the dynamics of biological mineralization of soil organic matter (SOM) determined via CO2 evolution during an 80-day laboratory incubation with their thermo-oxidative stability determined by thermogravimetry (TG). Thirty-three soil samples, originating from a wide range of geological and vegetation conditions from various German national parks were studied. The results showed a correlation between the amount and rate of respired CO2 and thermal mass losses of air-dried, conditioned soils occurring around 100?°C with linear coefficients of determination up to R 2?=?0.85. Further, correlation of soil respiration with thermal mass losses around 260?°C confirmed previous observations. The comparison of TG profiles from incubated and non-incubated soils underlined the importance of thermal mass losses in these two temperature intervals. Incubated soils had reduced thermal mass losses above 240?°C and conversely an increased mass loss at 100?C120?°C. Furthermore, the accurate determination of soil properties by TG such as soil organic carbon content was confirmed, and it was shown that it can be applied to a wider range of carbon contents as was previously thought. It was concluded that results of thermal analysis could be a helpful starting point for estimation of soil respiration and for development of methods revealing processes in soils.  相似文献   

10.
Toxoplasma gondii is an obligate intracellular protozoan of severe threat to humans and livestock, whose life history harbors both gamic and apogamic stages. Chinese 1 (ToxoDB#9) was a preponderant genotype epidemic in food-derived animals and humans in China, with a different pathogenesis from the strains from the other nations of the world. Posttranslational modifications (PTMs) of proteins were critical mediators of the biology, developmental transforms, and pathogenesis of protozoan parasites. The phosphoprotein profiling and the difference between the developmental phases of T. gondii, contributing to development and infectivity, remain unknown. A quantitative phosphoproteomic approach using IBT integrated with TiO2 affinity chromatography was applied to identify and analyze the difference in the phosphoproteomes between the sporulated oocysts and the tachyzoites of the virulent ToxoDB#9 (PYS) strain of T. gondii. A total of 4058 differential phosphopeptides, consisting of 2597 upregulated and 1461 downregulated phosphopeptides, were characterized between sporulated the oocysts and tachyzoites. Twenty-one motifs extracted from the upregulated phosphopeptides contained 19 serine motifs and 2 threonine motifs (GxxTP and TP), whereas 16 motifs identified from downregulated phosphopeptides included 13 serine motifs and 3 threonine motifs (KxxT, RxxT, and TP). Beyond the traditional kinases, some infrequent classes of kinases, including Ab1, EGFR, INSR, Jak, Src and Syk, were found to be corresponding to motifs from the upregulated and downregulated phosphopeptides. Remarkable functional properties of the differentially expressed phosphoproteins were discovered by GO analysis, KEGG pathway analysis, and STRING analysis. S8GFS8 (DNMT1-RFD domain-containing protein) and S8F5G5 (Histone kinase SNF1) were the two most connected peptides in the kinase-associated network. Out of these, phosphorylated modifications in histone kinase SNF1 have functioned in mitosis and interphase of T. gondii, as well as in the regulation of gene expression relevant to differentiation. Our study discovered a remarkable difference in the abundance of phosphopeptides between the sporulated oocysts and tachyzoites of the virulent ToxoDB#9 (PYS) strain of T. gondii, which may provide a new resource for understanding stage-specific differences in PTMs and may enhance the illustration of the regulatory mechanisms contributing to the development and infectivity of T. gondii.  相似文献   

11.
Chen Y  Xiong G  Arriaga EA 《Electrophoresis》2007,28(14):2406-2415
The properties of organelles within a cell have been shown to be highly heterogeneous. Until now, it has been unclear just how much of this heterogeneity is endemic to the organelle subpopulations themselves and how much is actually due to stochastic cellular noise. An attractive approach for investigating the origins of heterogeneity among the organelles of a single cell is CE with LIF detection (CE-LIF). As a proof of principle, in this report we optimize and use a single cell CE-LIF method to investigate the properties of endocytic (acidic) organelles. Our results show that the properties of individual acidic organelles containing Alexa Fluor 488 Dextran suggest that there are two groups of CCRF-CEM cells: a group with a high dextran content per cell, and a group with a low dextran content per cell. Furthermore, the individual organelle measurements of the single cells allow us to compare in each group the distributions of doxorubicin content per acidic organelle and electrophoretic mobilities of these organelles.  相似文献   

12.
Streaming current, surface conductivity and swelling data of poly(acrylic acid) (PAA) and poly(ethylene imine) (PEI) thin films are analyzed on the basis of the theory for diffuse soft interfaces (J.F.L. Duval, R. Zimmermann, A. L. Cordeiro, N. Rein, C. Werner, Langmuir 25 (2009) 10691). Focus is put on ways to unravel the electroosmotic and migration contributions of the measured surface conductivity, which is crucial for appropriate electrokinetic analysis of films carrying high densities of dissociable groups. Results demonstrate that the osmotically-driven swelling of the PAA films with increasing pH is accompanied by an increase in diffuseness for the interphasial polymer segment density distribution. This heterogeneity is particularly marked at low ionic strength with a non-monotonous dependence of the streaming current on pH and the presence of a maximum at pH~6.5. The analysis of the PEI films evidences heterogeneous swelling with lowering pH, i.e. upon protonation of the amine groups. The characteristic decay length in the interphasial PEI segment density distribution is found to be nearly independent of the pH, which is in line with the moderate swelling determined by ellipsometry. A critical discussion is given on the strengths and limitations of electrokinetics/surface conductivity for quantifying the coupled electrohydrodynamic and structural properties of moderately to highly swollen polyelectrolyte thin films.  相似文献   

13.
The protozoan parasite Toxoplasma gondii is representative of a large group of parasites within the phylum Apicomplexa, which share a highly unusual motility system that is crucial for locomotion and active host cell invasion. Despite the importance of motility in the pathology of these unicellular organisms, the motor mechanisms for locomotion remain uncertain, largely because only limited data exist about composition and organization of the cytoskeleton. By using cytoskeleton stabilizing protocols on membrane-extracted parasites and novel imaging with high-resolution low-voltage field emission scanning electron microscopy (LVFESEM), we were able to visualize for the first time a network of actin-sized filaments just below the cell membrane. A complex cytoskeletal network remained after removing the actin-sized fibers with cytochalasin D, revealing longitudinally arranged, subpellicular microtubules and intermediate-sized fibers of 10 nm, which, in stereo images, are seen both above and below the microtubules. These approaches open new possibilities to characterize more fully the largely unexplored and unconventional cytoskeletal motility complex in apicomplexan parasites.  相似文献   

14.
Yeng C  Osman E  Mohamed Z  Noordin R 《Electrophoresis》2010,31(23-24):3843-3849
Toxoplasma gondii infection in pregnant women may result in abortion and foetal abnormalities, and may be life-threatening in immunocompromised hosts. To identify the potential infection markers of this disease, 2-DE and Western blot methods were employed to study the parasite circulating antigens and host-specific proteins in the sera of T. gondii-infected individuals. The comparisons were made between serum protein profiles of infected (n=31) and normal (n=10) subjects. Antigenic proteins were identified by immunoblotting using pooled sera and monoclonal anti-human IgM-HRP. Selected protein spots were characterised using mass spectrometry. Prominent differences were observed when serum samples of T. gondii-infected individuals and normal controls were compared. A significant up-regulation of host-specific proteins, α(2)-HS glycoprotein and α(1)-B glycoprotein, was also observed in the silver-stained gels of both active and chronic infections. However, only α(2)-HS glycoprotein and α(1)-B glycoprotein in the active infection showed immunoreactivity in Western blots. In addition, three spots of T. gondii proteins were detected, namely (i) hypothetical protein chrXII: 3984434-3 TGME 49, (ii) dual specificity protein phosphatase, catalytic domain TGME 49 and (iii) NADPH-cytochrome p450 reductase TGME 49. Thus, 2-DE approach followed by Western blotting has enabled the identification of five potential infection markers for the diagnosis of toxoplasmosis: three are parasite-specific proteins and two are host-specific proteins.  相似文献   

15.
16.
Background: Myrtus communis (M. communis) is a wild aromatic plant used for traditional herbal medicine that can be demonstrated in insecticidal, antioxidant, anti-inflammatory, and antimicrobial activity of its essential oils (MCEO). Aim: The present study aimed to evaluate the prophylactic effects of M. communis essential oil (MCEO) against chronic toxoplasmosis induced by the Tehran strain of Toxoplasma gondii in mice. Methods: Gas chromatography/mass spectrometry (GC/MS) analysis was performed to determine the chemical composition of MCEO. Mice were then orally administrated with MCEO at the doses of 100, 200, and 300 mg/kg/day and also atovaquone 100 mg/kg for 21 days. On the 15th day, the mice were infected with the intraperitoneal inoculation of 20–25 tissue cysts from the Tehran strain of T. gondii. The mean numbers of brain tissue cysts and the mRNA levels of IL-12 and IFN-γ in mice of each tested group were measured. Results: By GC/MS, the major constituents were α-pinene (24.7%), 1,8-cineole (19.6%), and linalool (12.6%), respectively. The results demonstrated that the mean number of T. gondii tissue cysts in experimental groups Ex1 (p < 0.05), Ex2 (p < 0.001) and Ex3 (p < 0.001) was meaningfully reduced in a dose-dependent manner compared with the control group (C2). The mean diameter of tissue cyst was significantly reduced in mice of the experimental groups Ex2 (p < 0.01) and Ex3 (p < 0.001). The results demonstrated that although the mRNA levels of IFN-γ and IL-12 were elevated in all mice of experimental groups, a significant increase (p < 0.001) was observed in tested groups of Ex2 and Ex3 when compared with control groups. Conclusion: The findings of the present study demonstrated the potent prophylactic effects of MCEO especially in the doses 200 and 300 mg/kg in mice infected with T. gondii. Although the exceptional anti-Toxoplasma effects of MCEO and other possessions, such as improved innate immunity and low toxicity are positive topics, there is, however, a need for more proof from investigations in this field.  相似文献   

17.
Building blocks: A new, general synthetic strategy, which allows the construction of branched glycosylphosphatidylinositols (GPIs), enables the synthesis of parasitic glycolipid 1 from Toxoplasma gondii. In addition, the structure is further confirmed by recognition of monoclonal antibodies.  相似文献   

18.
The present experiments proved that specific antibody against Toxoplasma gondii or rabies virus (RV) could be induced in vitro in spleen cells from normal (i.e. not deliberately immunized) mice following seven days exposure to the relevant antigen presented in association with syngeneic macrophages. Using such in vitro-primed spleen cells as fusion partners with non-secretor myeloma cells, we were able to isolate hybridomas secreting anti-toxoplasma or anti-RV antibody with high frequency.A total of 12 cloned continuously propagable hybridoma lines were established, which secreted T. gondii-specific antibodies; 9 of the antibodies were directed against trophozoite membrane-associated antigen(s) and the remaining 3 could recognize soluble cytoplasmic antigen(s). Among the panel of 9 clonal antibodies reacting with trophozoite membrane antigen(s), only 4 showed reactivity in the Sabin-Feldmann dye test (complement-dependent cytotoxicity test). Fifteen stable cloned hybridomas obtained from fusions between myeloma cells and spleen cells primed in vitro against RV secreted antibodies which reacted with intact RV in radioimmunoassay. Since 10 of these 15 different hybridoma-derived antibodies could neutralize RV and also stained the membranes of RV-infected cells in the indirect immunofluorescence test, it can be postulated that they were directed against the coat glycoprotein (G-protein) of RV. The remaining 5 monoclonal antibodies which failed to neutralize RV stained the intracytoplasmic inclusions exclusively. This suggests that they may be recognizing the RV nucleocapsid determinant(s). Immunochemically, 17 monoclonal antibodies obtained in the present study (7 against T. gondii and 10 against RV) were of IgM class, 3 antibodies (2 against T. gondii and 1 against RV) were of IgG1 subclass and 7(3 against T. gondii and 4 against RV) were of IgG2a subclass. The continuously propagable hybridomas established in the present study provide a useful source of large quantities of homogeneous antibodies specific for T. gondii and RV.  相似文献   

19.
20.
Levels of disulfonated and tetrasulfonated aluminum phthalocyanines (AlPcS2,4) were measured in cells derived from FsaR tumors (murine fibrosarcoma using a fluorescence-activated cell sorter (FACS). The tumors were excised from animals injected with the sensitizer 24 h earlier and enzymatically dissociated. Before flow cytometry, the cells were stained with fluorescein isothiocyanate-conjugated anti-mouse monoclonal antibodies to specific immune cell membrane markers (Mac1, Fc receptor (FcR) or CD45). Staining to FcR and CD45 was combined with a DNA stain Hoechst 33342. This enabled concomitant discrimination to be made by the FACS between different populations of tumor-infiltrating host cells and malignant cells. The results showed on average 1.49 times higher AlPcS2, levels and 1.16 times higher AlPcS4 levels in Mac1-positive (Mac1+) compared with Mac1-negative (Mac1) tumor cell populations. The same type of experiments performed with SCCVII tumor (squamous cell carcinoma) gave average Mac1+/Mac1 ratios of 1.75 and 1.45 for AlPcS2 and AlPcS4 respectively. The data using other antibodies and DNA staining are consistent with the conclusion that, based on average per cell content, elevated levels of AlPcS2, and to a lesser extent AlPcS4, are retained in tumor-associated macrophages (TAM). The levels of these photosensitizers in other leukocytes and in non-immune host cells were not substantially different from those in malignant tumor cells. It is also shown that elevated levels of AlPcS2 and AlPcS4 are not localized in all TAM, but rather in a fraction of this cell population characterized by extremely high photosensitizer content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号