首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
The introduction of fluorophores into RNA for both in vitro and in cellulo studies of RNA function and cellular distribution is a subject of great current interest. Here I briefly review methods, some well-established and others newly developed, which have been successfully exploited to site-specifically fluorescently label interior positions of RNAs, as a guide to investigators seeking to apply this approach to their studies. Most of these methods can be applied directly to intact RNAs, including (1) the exploitation of natural posttranslational modifications, (2) the repurposing of enzymatic transferase reactions, and (3) the nucleic acid-assisted labeling of intact RNAs. In addition, several methods are described in which specifically labeled RNAs are prepared de novo.  相似文献   

4.
5.
The use of fluorescently tagged amyloid peptides, implicated in Alzheimer's disease, to study their aggregation at low concentrations is a common method; however, the fluorescent tag should not introduce a bias in the aggregation process. In this work, native amyloid peptides Aβ(1–40) and Aβ(1–42) and fluorescein-5-isothiocyanate (FITC), tagged ones, were studied using Taylor dispersion analysis coupled with a simultaneous UV and light-emitting diode-induced fluorescence detection, to unravel the effect of FITC on the aggregation process. For that, a total concentration of 100 µM of peptides consisting of a mixture of native and tagged ones (up to 10% in moles) was applied. Results demonstrated that FITC had a strong inhibition effect upon the aggregation behaviour of Aβ(1–42), whereas for Aβ(1–40), only a retardation in kinetics was observed. It was also shown that when mixed solutions of Aβ(1–40) and Aβ(1–42) are used, the Aβ(1–42) alloform was the leading peptide in the aggregation process, and when the latter was tagged, the aggregation kinetics decreased but the lifetime of potentially toxic oligomers was drastically increased. These results confirmed that the hydrophilicity of the N-terminus part of the peptide plays a major role in the aggregation process.  相似文献   

6.
In the last few years, the understanding of lysine acetylation as a regulatory post-translational modification of proteins in cell signalling cascades has increased. It is now known that not only histones but also non-histone factors can serve as substrates of different acetyltransferase enzymes. Acetylated lysine residues in non-histone factors are often identified using radioactive labelling experiments and immunochemical analysis of synthetic peptides. In this study of the human immunodeficiency virus 1 (HIV-1) Tat protein, we demonstrate the benefits of matrix-assisted laser desorption/ionisation mass spectrometry, proteolytic digestion and Edman sequencing for the mapping of acetylation sites. We confirmed that the HIV-1 Tat protein is acetylated in vitro by the acetyltransferase p300 at a specific lysine residue at position 50 in its RNA binding region. Furthermore, we showed that the Tat cysteine-rich region is acetylated at multiple cysteine residues in the absence of enzyme. Since this non-enzymatic cysteine acetylation occurs independently from the surrounding peptide sequence, we consider the presence of cysteine residues in acetylated peptides an important factor for the interpretation of in vitro acetylation assays in general.Abbreviations aa Amino acid - AcCoA Acetyl coenzyme A - acm Acetamidomethyl - ARM Arginine-rich motif - CRR Cysteine-rich region - HAT Histone acetyltransferaseThis article is dedicated to Harald zur Hausen on the occasion of his retirement as head of the German Cancer Research Center (Deutsches Krebsforschungszentrum) with gratitude and appreciation for 20 years of leadership  相似文献   

7.
Han KC  Yu J  Yang EG 《Electrophoresis》2005,26(22):4379-4386
Human immunodeficiency virus type 1 (HIV-1) Rev protein is known to regulate the expression of proteins via binding to an RNA site termed the HIV Rev response element (RRE) presumably with a defined shape, mediated mainly by electrostatic interactions. We have developed a quantitative method based on CE-LIF detection for a systematic evaluation of interactions between a truncated RRE (tRRE) RNA and an HIV-1 Rev peptide. Employing a fluorescently labeled HIV-1 Rev protein fragment (RevF) as a probe, buffers were evaluated for the separation and detection as well as for the RNA shape-specific formation of the complex. Selection of an optimal buffer condition allowed us to perform quantitation of the tRRE-RevF complex formation and determine its dissociation constant. In addition, competitive inhibitions of the RNA-peptide interaction by some aminoglycosides were evaluated quantitatively by monitoring the complex peak, resulting in determination of IC(50) values. This sensitive and reliable CE-LIF-based method would be of interest in developing various screening systems for RNA interference in drug discovery.  相似文献   

8.
A novel complementation system with short peptide-inserted-Renilla luciferase (PI-Rluc) and split-RNA probes was constructed for noninvasive RNA detection. The RNA binding peptides HIV-1 Rev and BIV Tat were used as inserted peptides. They display induced fit conformational changes upon binding to specific RNAs and trigger complementation or discomplementation of Rluc. Split-RNA probes were designed to reform the peptide binding site upon hybridization with arbitrarily selected target RNA. This set of recombinant protein and split-RNA probes enabled a high degree of sensitivity in RNA detection. In this study, we show that the Rluc system is comparable to Fluc, but that its detection limit for arbitrarily selected RNA (at least 100 pM) exceeds that of Fluc by approximately two orders of magnitude.  相似文献   

9.
The synthesis of a microenvironment-sensitive base-modified fluorescent ribonucleoside analog based on a 5-(benzo[b]thiophen-2-yl)pyrimidine core, enzymatic incorporation of its corresponding triphosphate into RNA oligonucleotides, and photophysical characterization of fluorescently modified oligoribonucleotides are described.  相似文献   

10.
11.
Site-specific chemical modification of proteins is important for many applications in biology and biotechnology. Recently, our laboratory and others have exploited the high specificity of the enzyme protein farnesyltransferase (PFTase) to site-specifically modify proteins through the use of alternative substrates that incorporate bioorthogonal functionality including azides and alkynes. In this study, we evaluate two aldehyde-containing molecules as substrates for PFTase and as reactants in both oxime and hydrazone formation. Using green fluorescent protein (GFP) as a model system, we demonstrate that the purified protein can be enzymatically modified with either analogue to yield aldehyde-functionalized proteins. Oxime or hydrazone formation was then employed to immobilize, fluorescently label, or PEGylate the resulting aldehyde-containing proteins. Immobilization via hydrazone formation was also shown to be reversible via transoximization with a fluorescent alkoxyamine. After characterizing this labeling strategy using pure protein, the specificity of the enzymatic process was used to selectively label GFP present in crude E. coli extract followed by capture of the aldehyde-modified protein using hydrazide-agarose. Subsequent incubation of the immobilized protein using a fluorescently labeled or PEGylated alkoxyamine resulted in the release of pure GFP containing the desired site-specific covalent modifications. This procedure was also employed to produce PEGylated glucose-dependent insulinotropic polypeptide (GIP), a protein with potential therapeutic activity for diabetes. Given the specificity of the PFTase-catalyzed reaction coupled with the ability to introduce a CAAX-box recognition sequence onto almost any protein, this method shows great potential as a general approach for selective immobilization and labeling of recombinant proteins present in crude cellular extract without prior purification. Beyond generating site-specifically modified proteins, this approach for polypeptide modification could be particularly useful for large-scale production of protein conjugates for therapeutic or industrial applications.  相似文献   

12.
The highly conserved HIV‐1 transactivation response element (TAR) binds to the trans‐activator protein Tat and facilitates viral replication in its latent state. The inhibition of Tat–TAR interactions by selectively targeting TAR RNA has been used as a strategy to develop potent antiviral agents. Therefore, HIV‐1 TAR RNA represents a paradigmatic system for therapeutic intervention. Herein, we have employed biotin‐tagged TAR RNA to assemble its own ligands from a pool of reactive azide and alkyne building blocks. To identify the binding sites and selectivity of the ligands, the in situ cycloaddition has been further performed using control nucleotide (TAR DNA and TAR RNA without bulge) templates. The hit triazole‐linked thiazole peptidomimetic products have been isolated from the biotin‐tagged target templates using streptavidin beads. The major triazole lead generated by the TAR RNA presumably binds in the bulge region, shows specificity for TAR RNA over TAR DNA, and inhibits Tat–TAR interactions.  相似文献   

13.
Sieben VJ  Backhouse CJ 《Electrophoresis》2005,26(24):4729-4742
When performing genetic analysis on microfluidic systems, labeling the sample DNA for detection is a critical preparation step. Labeling procedures often involve fluorescently tagged primers and PCRs, which lengthen experimental run times and introduce higher levels of complexity, increasing the overall cost per analysis. Alternatively, on-chip labeling techniques based on intercalating dyes permit rapid labeling of DNA fragments. However, as noted in the literature, the stochastic nature of dye-DNA complex formation hinders the native electrophoretic migration of DNA fragments, degrading the separation resolution. In this study, we present a novel method of controllably labeling DNA fragments at the end of the electrophoretic separation channel in a glass microfluidic chip. Permitting the DNA to separate and labeling just before detection, achieves the rapid labeling associated with intercalators while maintaining the high resolution of native DNA separations. Our analyses are completed in minutes, rather than the hours typical of sample prelabeling. We demonstrate an electrophoretic microchip-based intercalator labeling technique that achieves higher resolution performance than reported in the literature to date.  相似文献   

14.
Rhodium catalyzed O-H insertion reactions employing α-diazophosphonate 20 with appropriately protected thymidine, uridine, cytosine, adenosine and guanosine derivatives leads to novel 5'-phosphononucleoside derivatives. Deprotection led to a novel series of phosphono derivatives bearing a carboxylic acid moiety adjacent to the phosphonate group with potential antiviral and/or anticancer activity. The phosphononucleosides bearing an α-carboxylic acid group are envisaged as potential diphosphate mimics. Conversion to mono- and diphosphorylated phosphononucleosides has been effected for evaluation as nucleoside triphosphate mimics. Most of the novel phosphononucleosides proved to be inactive against a variety of DNA and RNA viruses. Only the phosphono AZT derivatives 56-59 showed weak activity against HIV-1 and HIV-2.  相似文献   

15.
Complicated electropherograms are produced in the separation of fluorescently labeled peptides. Incomplete labeling of epsilon-amino groups on lysine residues results in the production of 2n-1 reaction products, where n is the number of alpha and epsilon amino groups in the peptide. A single label is attached to the peptide by first taking the peptide through one cycle of the Edman degradation reaction. All epsilon-amino groups are converted to the phenyl thiocarbamyl and the cleavage step exposes one alpha-amino group at the N-terminus of the peptide; the fluorescent label is attached to the N-terminus.  相似文献   

16.
The highly conserved HIV-1 transactivation response element (TAR) binds to the trans-activator protein Tat and facilitates viral replication in its latent state. The inhibition of Tat–TAR interactions by selectively targeting TAR RNA has been used as a strategy to develop potent antiviral agents. Therefore, HIV-1 TAR RNA represents a paradigmatic system for therapeutic intervention. Herein, we have employed biotin-tagged TAR RNA to assemble its own ligands from a pool of reactive azide and alkyne building blocks. To identify the binding sites and selectivity of the ligands, the in situ cycloaddition has been further performed using control nucleotide (TAR DNA and TAR RNA without bulge) templates. The hit triazole-linked thiazole peptidomimetic products have been isolated from the biotin-tagged target templates using streptavidin beads. The major triazole lead generated by the TAR RNA presumably binds in the bulge region, shows specificity for TAR RNA over TAR DNA, and inhibits Tat–TAR interactions.  相似文献   

17.
Pseudouridine synthases   总被引:1,自引:0,他引:1  
  相似文献   

18.
19.
A new approach is reported that combines synchrotron radiolysis and mass spectrometry to probe the surface of proteins. Hydroxyl radicals produced upon the radiolysis of protein solutions with synchrotron light for several milliseconds result in the reaction of amino acid side chains. This results in the formation of stable oxidation products where the level of oxidation at the reactive residues is influenced by the accessibility of their side chains to the bulk solvent. The aromatic and sulfur-containing residues have been found to react preferentially in accord with previous peptide studies. The sites of oxidation have been determined by tandem mass spectrometry. The rate of oxidation at these reactive markers has been measured for each of the proteolytic peptides as a function of exposure time based on the relative proportion of modified and unmodified peptide ions detected by mass spectrometry. Oxidation rates have been found to correlate closely with a theoretical measure of the accessibility of residue side chains to the bulk solvent in the native protein structure. The synchrotron-based approach is able to distinguish the relative accessibility of the tryptophan residue side chains of lysozyme at positions 62 and 123 from each other and all other tryptophan residues based on their rates of oxidation.  相似文献   

20.
Hammerhead ribozymes that are subject to allosteric control by small molecule and oligonucleotide effectors have been reported recently. Rational design has been an effective strategy for the creation of these ribozymes, which incorporate structurally interdependent hammerhead motifs and effector-binding sequences. In this paper we report the rational design of the first protein-responsive allosteric ribozymes that are regulated by the HIV-1 Tat. The TAR-Tat interaction of HIV-1 has the interesting feature that both Tat and arginine are able to bind to and bring about comparable conformational changes in the TAR loop. Here we describe the construction of two classes of TAR-modified hammerhead ribozymes and their response to Tat protein and to its derivatives. Instances of both allosteric activation and inhibition were found. Interestingly, the activation response was stimulated by both Tat and argininamide while the inhibitory response was stimulated by Tat and by its derivative peptide, ADP1, but not by argininamide. Overall, the extent of allosteric response in our ribozymes was modest relative to those reported for ribozymes with small molecule effectors. Future work utilizing combinatorial approaches along with elements of rational design should reveal the means by which highly efficient, protein-mediated allostery of ribozymes may be achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号