首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用G四聚体可以熄灭荧光的特性以及T-Hg2+-T的特殊结构, 发展了一种简便的"Turn on"型碘离子检测新方法. 设计了一条5'端标有荧光基团的富T序列, 3'端采用能形成G四聚体的富G序列代替传统的熄灭基团. 加入汞离子后, 富T序列形成T-Hg2+-T机构发生折叠, G四聚体靠近荧光基团, 发生光诱导电子转移, 使荧光被熄灭. 若加入碘离子, 碘离子会与汞离子形成较稳定的配合物, 汞离子从DNA上被竞争下来, 探针的荧光得以恢复, 且荧光强度与50~500 nmol/L的碘离子呈良好线性关系, 检出限为30 nmol/L. 本方法选择性好, 10倍于碘离子浓度的其它常见阴离子干扰较小. 检测自来水样中碘离子的回收率为92%~109%, 相对标准偏差RSD<4%(n=4).  相似文献   

2.
The binding properties between meso-tetrakis(4-(N-methylpyridiumyl))porphyrin (TMPyP4) and the parallel DNA G-quadruplex (G4) of telomeric repeated sequence 5′-TTAGGG-3′ have been characterized by means of circular dichroism,steady-state absorption,steady-state fluorescence and picosecond time-resolved fluorescence spectroscopies. The binding constant and the saturated binding number were determined as 1.29×106 (mol/L)-1 and 3,respectively,according to steady-state absorption spec-troscopy. Based on the findings by the use of time-resolved fluorescence spectroscopic technique,it is deduced that TMPyP4 binds to a DNA G-quadruplex with both the thread-intercalating and end-stacking modes and at the saturated binding state,one TMPyP4 molecule intercalates into the intervals of G-tetrads while the other two stack to the ends of the DNA G-quadruplex.  相似文献   

3.
The binding properties between meso-tetrakis(4-(N-methylpyridiumyl))porphyrin (TMPyP4) and the parallel DNA G-quadruplex (G4) of telomeric repeated sequence 5′-TTAGGG-3′ have been characterized by means of circular dichroism, steady-state absorption, steady-state fluorescence and picosecond time-resolved fluorescence spectroscopies. The binding constant and the saturated binding number were determined as 1.29×106 (mol/L)−1 and 3, respectively, according to steady-state absorption spectroscopy. Based on the findings by the use of time-resolved fluorescence spectroscopic technique, it is deduced that TMPyP4 binds to a DNA G-quadruplex with both the thread-intercalating and end-stacking modes and at the saturated binding state, one TMPyP4 molecule intercalates into the intervals of G-tetrads while the other two stack to the ends of the DNA G-quadruplex. Supported by the National Natural Science Foundation of China (Grant Nos. 20442004, 10576002 and 20703067)  相似文献   

4.
The interactions between cationic meso-tetrakis(4-(N-methylpyridiumyl))porphyrin (TMPyP4) and the G-quadruplex (G4) of human telomeric single-strand oligonucleotide d(TTAGGG)2 (S12) have been investigated by means of circular dichroism (CD), UV–visible absorption and fluorescence spectroscopies. It is found that TMPyP4 can preferentially induce the conformational conversion of the G4 structure from the parallel type to the parallel/antiparallel mixture in the presence of K+, and that it can directly induce the formation of antiparallel G4 structure from the single-strand oligonucleotide S12 in the absence of K+. Furthermore, the comparable experiments of TMPyP4 with two single-strand oligonucleotides S6 d(TTAGGG) and S24 d(TAGGG(TTAGGG)3T) in the absence of K+ show that TMPyP4 can also induce the formation of antiparallel G4 from S24 but not from S6, indicating that the end-loops of the G4 structure are the key factors for the formation of G4 induced by TMPyP4.  相似文献   

5.
A facile and multi-response strategy for studying the transformations of human telomere DNA from single strand (ss) to double strand (ds) and G-quadruplex has been established by using positively charged gold nanorod (AuNR) as an optical label. The conformation change information of the telomere DNA was transferred into multiple optical signals, including changes in fluorescence emission, near infrared (NIR) absorption, plasma resonance light scattering (PRLS) and dynamic light scattering (DLS) response. The formations of dsDNA and G-quadruplex DNA induced fluorescence quenching of dye on DNA, and were accompanied by the intensity decrease and blue shift of the longitudinal absorption peak of AuNRs. Meanwhile, PRLS and DLS results revealed slightly increased AuNR aggregation due to increased charge density of dsDNA and G-quadruplex DNA as compared to ssDNA. Control experiment suggests that the AuNR-based assay is highly sequence specific; and the high sensitivity allows the study of human telomere DNA at a concentration as low as 58 nM.  相似文献   

6.
The detection of G-quadruplex is of major interest. Nitro-substituted ruthenium (II) complexes have attracted much attention due to fluorescent sensitivity to environment change. We report here a new nitro-substituted ruthenium (II) complex, [Ru (phen)2(hnoip)]2+ ( 1) (hnoip = 2-(2-hydroxyl-5-nitrophenyl)imidazo[4,5-f][1,10-phenanthroline]), which displays distinct fluorescent properties in aqueous solution and non-aqueous solvents. This complex exhibits large fluorescence enhancement after binding with G-quadruplex DNA, and displays good fluorescent selectivity over other DNAs. The limit of detection is 6 nm for 22AG in Na+ and 43 nm for 22AG in K+, respectively. The results demonstrated that nitro-substituted ruthenium (II) complexes can be utilized to design as G-quadruplex fluorescent probes by protection of the nitro group on the complex from water.  相似文献   

7.
Triphenylmethane (TPM) dyes normally render rather weak fluorescence due to easy vibrational deexcitation. However, when they stack onto the two external G-quartets of a G-quadruplex (especially intramolecular G-quadruplex), such vibrations will be restricted, resulting in greatly enhanced fluorescence intensities. Thus, TPM dyes may be developed as sensitive G-quadruplex fluorescent probes. Here, fluorescence spectra and energy transfer spectra of five TPM dyes in the presence of G-quadruplexes, single- or double-stranded DNAs were compared. The results show that the fluorescence spectra of four TPM dyes can be used to discriminate intramolecular G-quadruplexes from intermolecular G-quadruplexes, single- and double-stranded DNAs. The energy transfer fluorescence spectra and energy transfer fluorescence titration can be used to distinguish G-quadruplexes (including intramolecular and intermolecular G-quadruplexes) from single- and double-stranded DNAs. Positive charges and substituent size in TPM dyes may be two important factors in influencing the binding stability of the dyes and G-quadruplexes.  相似文献   

8.
In this work, a novel potassium ion (K+) sensor is presented using berberine–G-quadruplex complex as a fluorescent probe. This sensor is based on the K+that can induce the G-rich DNA to form G-quadruplex conformation. The G-quadruplex can bind berberine to form berberine–G-quadruplex complex, resulting in remarkable enhancement of fluorescence emission of the berberine–G-quadruplex system. In the presence of 800 mM sodium ion (Na+), the fluorescence of the berberine–G-quadruplex complex increased linearly with increasing K+ concentration in the range of 0.005–1.0 mM. The turn-on fluorescent assay is simple, inexpensive, and highly sensitive. We observed that Na+ in 10,000-fold molar excess does not interfere. The molecular mechanisms which produce enhanced fluorescence of berberine were discussed.  相似文献   

9.
G-quadruplex structures are attractive targets for the development of anticancer drugs, as their formation in human telomere could impair telomerase activity, thus inducing apoptosis in cancer cells. In this work, a thiophene-containing dinuclear ruthenium(II) complex, [Ru2(bpy)4(H2bipt)]4+ {bpy = 2,2′-bipyridine, H2bipt = 2,5-bis[1,10]phenanthrolin[4,5-f]-(imidazol-2-yl)thiophene}, was prepared and the interaction between the complex and human telomeric DNA oligomers 5′-G3(T2AG3)3-3′ (HTG21) has been investigated by UV-Vis, fluorescence and circular dichroism (CD) spectroscopy, fluorescence resonance energy transfer (FRET) melting assay, polymerase chain reaction (PCR) stop assay, fluorescent intercalator displacement (FID) titrations, Job plot and color reaction studies. The results indicate that the complex can well induce and stabilize the formation of antiparallel G-quadruplex of telomeric DNA in the presence or absence of metal cations, and the ΔTm value of the G-quadruplex DNA treated with the complex was obtained to be 12.8 °C even at levels of 50-fold molar of duplex DNA (calf-thymus DNA), suggesting that the complex exhibits higher G-quadruplex DNA selectivity over duplex DNA. The complex shows high interaction ability with G-quadruplex DNA at (1.17 ± 0.12) × 107 M?1 binding affinity using a 2:1 [complex]/[quadruplex] binding mode ratio. A novel visual method has been developed here for making a distinction between G-quadruplex DNA and duplex DNA by our ruthenium complex binding hemin to form the hemin-G-quadruplex DNAzyme.  相似文献   

10.
人体端粒由富含鸟嘌呤(G)的DNA重复序列组成,该序列在一定条件下可以形成G-四链体DNA结构。小分子化合物诱导该结构的形成并使之稳定,可以抑制端粒酶活性而达到抗肿瘤的目的。因此,G-四链体DNA稳定剂的设计和筛选是近年来生物无机化学的重要前沿研究领域之一。在金属配合物中,钌配合物由于具有丰富的光化学、光物理特性以及生物活性,其作为G-四链体DNA稳定剂引起人们的高度关注。本文以近年一些代表性的研究工作为例,对钌配合物与G-四链体DNA相互作用方面的研究进展进行了综述。  相似文献   

11.
12.
已有研究普遍认为铅离子(Pb2+)诱导富G适体链形成的G-四链体(Pb2+-G4)比钾离子(K+)诱导富G适体链形成的G-四链体(K+-G4)更为稳定,因而Pb2+可以置换K+-G4中的K+,而且K+的存在不影响Pb2+-G4的稳定性。有趣的是本研究发现K+ (20 μmol∙L−1–1 mmol∙L−1)不仅可以诱导10 µmol∙L−1 Pb2+稳定的T2TT(Pb2+-T2TT,杂合G4结构)发生构型转换,甚至还可取代Pb2+-T2TT中的Pb2+,形成K+稳定的T2TT (K+-T2TT,平行G4结构),最终转化形成的K+-G4结构与单独K+诱导富G适体链形成K+-G4的构型基本一致。随后,进一步考察了另外7条富G适体链,发现这一转化过程具有一定的普适性。该研究结果为理解G4构型转化以及内嵌离子交换提供了新的视角,也为拓展G4在生化分析和生物领域的应用提供了新的理论基础。  相似文献   

13.
A single-stranded human telomere DNA sequence can fold into an intramolecular G-quadruplex structure, which has been shown to inhibit telomerase activity. Small molecules that selectively target and stabilise the G-quadruplex structure have been proposed as potential anticancer drugs. In this study, we analysed the properties of binding of malachite green, a cationic triphenylmethane dye, to the G-quadruplex of d[(T2AG3)4] by UV spectroscopy of thermal melting analysis, a competitive equilibrium dialysis assay, and absorption and circular dichroism spectroscopies. When binding to malachite green, the quadruplex structure that formed in the presence of K+ ions was stabilised with an increase in melting temperatures by 6 °C. Malachite green showed selective binding to the G-quadruplex in the presence of duplex and single-stranded DNAs, owing to which it presents higher potential for anticancer therapy, compared to other triphenylmethane dyes. The induced signals of circular dichroism indicate that the binding mode of malachite green involves intercalation between adjacent guanine tetrads of the G-quadruplex.  相似文献   

14.
本文以自组装法制得的双链DNA(ds.DNA)和G-四链体DNA(G4-DNA)修饰的金电极为工作电极,以Fe(CN)63-/4-为电活性指示剂,采用循环伏安法和微分脉冲伏安法研究了非电活性苯磺酰类5-氟尿嘧啶衍生物与ds-DNA和G4.DNA的相互作用.实验结果表明:苯磺酰类5-氟尿嘧啶与ds-DNA或G4.DNA的结合常数与苯环上邻、对位取代基的得失电子能力密切相关,强吸电子基团取代有利于苯磺酰类5-氟尿嘧啶选择性结合G-四链体DNA.  相似文献   

15.
以自组装法制得的双链DNA(ds-DNA)和G-四链体DNA(G4-DNA)修饰的金电极为工作电极, 以 为电活性指示剂, 采用循环伏安法和微分脉冲伏安法研究了RS型2-(5-氟尿嘧啶-1-乙酰基)氨基-1,5-戊二酸二甲酯(简称为(R)-5FUGlu和(S)-5FUGlu)与ds-DNA和G4-DNA相互作用. 实验结果表明: (1)与5-氟尿嘧啶(5-FU)相反, (R)-5FUGlu或(S)-5FUGlu导致 在Au/ds-DNA和Au/G4-DNA修饰电极上的峰电位呈现负移行为|(2)随着5-FU, (R)-或(S)-5FUGlu浓度的增加, 在上述修饰电极上的峰电流均呈现下降现象, 且峰电流的下降值△Ip的倒数与药物浓度的倒数呈现良好的线性关系|(3)运用Langmuir公式计算获得5-FU, (S)-5FUGlu和(R)-5FUGlu与ds-DNA的结合常数分别为6.16×103, 0.42×103和0.58×103 L•mol-1, 而与G4-DNA 的结合常数分别为0.78×103, 2.60×103和5.29×103 L•mol-1|(4) (R)-5FUGlu和(S)-5FUGlu在浓度为10-4, 10-6, 10-8 mol•L-1时对HL-60肿瘤细胞生长的抑制率分别为55.8和2.8, 12.8和1.5以及5.9和0.6, 这与(R)-5FUGlu比(S)-5FUGlu分子具有更强的靶向结合G4-DNA能力相吻合.  相似文献   

16.
A new Ru(II) complex, [Ru(bpy)2L](ClO4)2 (bpy?=?2,2′-bipyridine, L?=?1,10-phenanthrolineselenazole), has been synthesized and structurally characterized by elemental analysis, ESI-MS, and 1H NMR. The interaction of human telomeric oligomer 5′-AG3(T2AG3)3-3′ with the Ru(II) complex was explored by competition FRET experiment, ?uorescence titration, circular dichroism spectroscopy, thermal denaturation, polymerase chain reaction stop assay, and TRAP assay. The Ru(II) complex can selectively bind to G-quadruplex DNA. The results indicated that the complex not only induces a remarkable conformational change of human telomeric DNA, but also has the ability to stabilize the G-quadruplex.  相似文献   

17.
As a new detection model, the reversible fluorescence “turn-off-on” sensor based on quantum dots (QDs) has already been successfully employed in the detections of many biochemical materials, especially in the researches on the interactions between anticancer drugs. The previous studies, however, mainly focused on simple-structured oligonucleotides and Calf thymus DNA. G-quadruplex, an important target for anti-cancer drug with special secondary structure, has been stimulating increasing research interests. In this paper, we report a new detection method based on the fluorescence “turn-off-on” model with water-soluble ZnCdSe QDs as the fluorescent probe, to analyze the interactions between anticancer drug (N-methyl-4-pyridyl) porphyrin (TMPyP) and nucleic acid, especially the G-quadruplex. The fluorescence of QDs can be quenched by TMPyP via photo-induced electron transfer and fluorescence resonance energy transfer, while on the other hand, the combination between TMPyP and G-quadruplex releases QDs from their quenchers and thus recovers the fluorescence. Most importantly, the fluorescence “turn-off-on” model has been employed, for the first time, to analyze the impacts of special factors on the interaction between TMPyP and G-quadruplex. The excellent selectivity of the system has been verified in the studies of the interactions between TMPyP and different DNAs (double-stranded DNA, single-stranded G-quadruplex, and different types of G-quadruplexes) in Na+ or K+-containing buffer.  相似文献   

18.
The DNA fragment containing D promoter of the T7 bacteriophage and its complex with DNA-dependent RNA polymerase undergo a conformational transition at 30 °C, which is accompanied by an increase in the rate of phosphodiester bond synthesis.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1339–1374, July, 1995.The present work was supported by the International Science Foundation (project No. RMY300) and the Russian Foundation for Basic Research (project No. 94-04-11306a).  相似文献   

19.
The conformational transition of a fluorinated amphiphilic dendrimer is monitored by the 1H signal from water, alongside the 19F signal from the dendrimer. High-field NMR data (chemical shift δ, self-diffusion coefficient D, longitudinal relaxation rate R1, and transverse relaxation rate R2) for both dendrimer (19F) and water (1H) match each other in detecting the conformational transition. Among all parameters for both nuclei, the water proton transverse-relaxation rate R2(1H2O) displays the highest relative scale of change upon conformational transition of the dendrimer. Hydrogen/deuterium-exchange mass spectrometry reveals that the compact form of the dendrimer has slower proton exchange with water than the extended form. This result suggests that the sensitivity of R2(1H2O) toward dendrimer conformation originates, at least partially, from the difference in proton exchange efficiency between different dendrimer conformations. Finally, we also demonstrated that this conformational transition could be conveniently monitored using a low-field benchtop NMR spectrometer via R2(1H2O). The 1H2O signal thus offers a simple way to monitor structural changes of macromolecules using benchtop time-domain NMR.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号