首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cold isostatic press pretreatment process was adopted to prepare fine rare earth oxysulfide up-conversion phosphors with spherical shape, narrow size distribution and high luminescence efficiency. The upconversion optical characteristics and brightness of the blue (Y2O2SYb,Tm), green (Y2O2S: Yb,Er), red (Y2O3Yb,Er) emitter were also investigated, and a novel method was successfully developed for the brightness measurement of upconversion luminescence (UPL). It is shown that a white color can be obtained by the appropriate mixture of these primary blue, green and red emissions components. The Er3 ions exhibit different upconversion mechanism in Y2O2S and Y2O3 host materials. The rare earth oxysulfide is an efficient upconversion matrix. The UPL brightness of Y2O2S: Yb,Er is 6.5 times higher than that of Y2O3: Yb,Er, and Y2O2S: Yb,Er shows UPL brightness of 1100 cd/m2 under 5.56 W/cm2 power density using a 980 nm laser diode.  相似文献   

2.
We report an upconverting nanomaterial composition, [Y(2)O(3); Yb (2%), Er (1%)], that converts both X-ray and high-fluence NIR irradiation to visible light. This composition is compared to a higher Yb(3+) doped composition, [Y(2)O(3); Yb (10%), Er (1%)], that displays diminished visible X-ray scintillation, but shows enhanced red wavelength centered upconversion emission. These nanocrystals have been characterized by TEM, X-ray diffraction, power-dependent upconversion luminescence, and X-ray scintillation spectroscopy. We further demonstrate that lithium ion doping of the [Y(2)O(3); Yb (2%), Er (1%)] nanoscale composition leads to enhanced X-ray and NIR excited emission intensities through the production of nanoparticles that feature slightly enhanced sizes and increased crystallinity.  相似文献   

3.
We report efficient white upconversion luminescence in Yb(3+)-, Er(3+)- and Tm(3+)-doped monophasic and biphasic Y(2)BaZnO(5) phosphors under 977 nm near-infrared excitation and at low excitation power densities (down to ~25 mW mm(-2)).  相似文献   

4.
Yttrium oxysulfide upconverting phosphor nanoparticles, doped with Yb as a sensitizer and Er (or Ho, Tm) as an activator, have been prepared via a solid-gas reaction using precursor oxalate particles obtained in an emulsion liquid membrane (ELM, water-in-oil-in-water (W/O/W) emulsion) system. The resulting Y(2)O(2)S:Yb,Er particles, mainly smaller than 50 nm in diameter, demonstrated green upconversion emission under infrared excitation (lambdaex = 980 nm) via a two-photon process. Distinct green and blue upconversion emission were also demonstrated under the same infrared excitation from Y(2)O(2)S:Yb,Ho and Y(2)O(2)S:Yb,Tm nanoparticles, respectively. These upconverting phosphor nanoparticles, together with Y(2)O(3):Yb,Er infrared-to-red upconverting phosphor particles, with different emission under the same infrared excitation may be applied to the luminescent reporter materials for the detection of the targeted analyte in multiplexed assays.  相似文献   

5.
Under 980?nm near-infrared (NIR) excitation, upconversion luminescent (UCL) emission of GdF(3):Yb,Er upconversion nanoparticles (UCNPs) synthesized by a simple and green hydrothermal process can be tuned from yellow to red by varying the concentration of dopant Li(+) ions. A possible mechanism for enhanced red upconverted radiation is proposed. A layer of silica was coated onto the surface of GdF(3):Yb,Er,Li UCNPs to improve their biocompatibility. The silica-coated GdF(3):Yb,Er,Li UCNPs show great advantages in cell labeling and in vivo optical imaging. Moreover, GdF(3) UCNPs also exhibited a positive contrast effect in T(1)-weighted magnetic resonance imaging (MRI). These results suggest that the GdF(3) UCNPs could act as dual-modality biolabels for optical imaging and MRI.  相似文献   

6.
Er~(3 )/Yb~(3 )共掺杂AlF_3基氟化物玻璃材料的频率上转换   总被引:2,自引:0,他引:2  
Er3 /Yb3 共掺杂的AlF3基氟化物玻璃材料ABCY的制备及其上转换荧光性质。样品的组分为 40AlF3 2 0BaF2 2 0CaF2 (2 0 2x 2y)YF3 xEr2 O3 yYb2 O3。在 95 0nm连续LD激发下 ,观察到该材料很强的绿色上转换发光 ,研究了该体系的上转换机理 ,认为Yb3 和Er3 之间的APTE效应是最主要的上转换途径。解释了红、绿色上转换荧光强度比值增大的现象 ,指出了可能的交叉弛豫过程。用公式y =a(x -x0 ) n 对上转换荧光强度与LD工作电流的关系进行拟合 ,得到的结果与理论值很好地一致。  相似文献   

7.
The novel Er(3+) single-doped and Er(3+)/Yb(3+) co-doped tellurite glasses were prepared. The effect of Yb(2)O(3) concentration on absorption spectra, emission spectra and upconversion spectra of glasses were measured and investigated. The emission intensity, fluorescence full width at half maximum (FWHM) and upconversion luminescence of Er(3+) go up with the increasing concentration of Yb(3+) ions. The maximum FWHM of (4)I(13/2) --> (4)I(15/2) transition of Er(3+) is approximate 77 nm for 1.41 x 10(21)ions/cm(3) concentration of Yb(3+)-doped glass. The visible upconversion emissions at about 532, 546 and 659 nm, corresponding to the (2)H(11/2) --> (4)I(15/2), (4)S(3/2) --> (4)I(15/2) and (4)F(9/2) --> (4)I(15/2) transitions of Er(3+), respectively, were simultaneously observed under the excitation at 970 nm. Subsequently, the possible upconversion mechanisms and important role of Yb(3+) on the green and red emissions were discussed and compared. The results demonstrate that this kind of tellurite glass may be a potentially useful material for developing potential amplifiers and upconversion optical devices.  相似文献   

8.
Here we report a general hydrothermal technology to obtain well-known rare earth fluorides involving β-NaYF(4):Yb, Er/Tm and β-NaGdF(4):Yb, Er/Tm upconversion nanocrystals, one new polymorph of γ-REF(3) (RE = Eu-Tm, Y) and hexagonal LiREF(4) (RE = Nd-Lu, Y) colloidal nanocrystals.  相似文献   

9.
The absorption spectra and upconversion fluorescence spectra of Er3+/Yb3+-codoped natrium-gallium-germanium-bismuth glasses are measured and investigated. The intense green (533 and 549 nm) and red (672 nm) emission bands were simultaneously observed at room temperature. The quadratic dependence of the green and red emission on excitation power indicates that the two-photon absorption processes occur. The influence of Ga2C3 on upconversion intensity is investigated. The intensity of green emissions increases slowly with increasing Ga2O3 content, while the intensity of red emission increases significantly. The possible upconversion mechanisms for these glasses have also been discussed. The maximum phonon energy of the glasses determined based on the infrared (IR) spectral analysis is as low as 740 cm-1. The studies indicate that Bi2O3-GeO2-Ga2O3-Na2O glasses may be potential materials for developing upconversion optical devices.  相似文献   

10.
Er3+/Yb3+ co-doped TeO2-B2O3-Nb2O5-ZnO (TBN) glasses were prepared. The absorption spectra and upconversion luminescence spectra of TBN glasses were measured and analyzed. The upconversion emission bands centered at 530, 546 and 658 nm were observed under the excitation at 975 nm, corresponding to the transitions of 2H11/2-->4I15/2, 4S3/2-->4I15/2 and 4F9/2-->4I15/2 respectively. The ratio of red emission to green emission increases with an increasing of Yb3+ ions concentration. According to the quadratic dependence on excitation power, the possible upconversion mechanisms and processes were discussed.  相似文献   

11.
The absorption and upconversion fluorescence spectra of a series of Er3+/Yb3+-codoped xBi(2)O(3)-(90-x)GeO2-10Na(2)O (BGN x, x=31, 36, 41, 46 and 51 mol%) glasses have been studied. Intense green and red emission bands at around 533, 548 and 659 nm, corresponding to the 2H(11/2)-->4I(15/2), 4S(3/2)-->4I(15/2) and 4F(9/2)-->4I(15/2) transitions of Er3+, respectively, were simultaneously observed at room temperature. The dependence of intensities of upconversion emission on excitation power and possible upconversion mechanisms were evaluated and analyzed. The important role of Bi(2)O(3) in upconversion intensity is observed and its influence on the green (533 and 548 nm) and red (659 nm) emissions is compared and discussed. The influence of Bi(2)O(3) on the upconversion emissions has been investigated based on the IR spectra.  相似文献   

12.
Surface modification of Y2O3 nanoparticles   总被引:1,自引:0,他引:1  
Rare earth ion-doped yttrium oxide (Y2O3) nanocrystals are nontoxic and can be prepared as upconversion materials for cellular imaging, but they do not suspend well in water. In contrast to their tendency to dissolve in acidic media, yttria (Y2O3) nanoparticles readily react with phosphonic acids to give phosphonate-bonded yttria particles. Through the choice of phosphonic acid, the hydrophilicity of the nanoparticles can be controlled. The synthesis of a novel tetraethylene glycol-derived phosphonic acid is described; yttria treated with the corresponding phosphonate is easily dispersed in aqueous media. The preparation of yttria bonded to a phosphonate that may be used for cross coupling with biomolecules is also described.  相似文献   

13.
Erbium, Ytterbium-codoped ZrO2 nanoparticles(ZrO2∶Er3 ,Yb3 ) were prepared by the sol-emulsion-gel technique. The purpose of the present study is the application of upconversion phosphor in the biological label. In order to make out the mechanism of upconversion under 980 nm excitation the 488 nm pump was used. The influence of temperature on the crystallite phase was studied. The results confirm the upconverted mechanism in ZrO2∶Er3 ,Yb3 nanocrystals is due to an energy transfer upconversion(ETU).  相似文献   

14.
以尿素为沉淀剂,采用低温水热法结合煅烧过程制备出MgAl2O4∶Er^3+,Yb^3+上转换荧光粉,并对样品的结构、微观形貌及上转换发光性能予以表征。结果表明,随尿素加入量的增大,产物主形貌由六角片状结构向纳米棒状转变,经1100℃煅烧可得纯相镁铝尖晶石结构,且Er^3+和Yb^3+能有效进入MgAl2O4晶格并占据Mg^2+位置形成均匀固溶体。在980 nm光激发下,MgAl2O4∶1.0%(n/n)Er^3+,x%(n/n)Yb^3+(x=0~8.0)荧光粉表现出在524、545 nm处绿光以及658 nm处的强红光发射,红绿光强度均在5.0%(n/n)Yb^3+掺杂时达到最大,但红绿光强度比却在7.0%(n/n)Yb^3+掺杂时达到最大值5.2,这归因于Er^3+-Er^3+之间交叉弛豫(CR)在红光发射过程中所起的重要作用。通过控制荧光粉中Yb^3+的掺杂量,能初步实现对于黄绿光色度的有效调控。  相似文献   

15.
Optical transitions of Er3+/Yb3+ codoped TeO2-WO3-Bi2O3 glass   总被引:3,自引:0,他引:3  
Optical absorption and emission properties of the Er3+/Yb3+ codoped TeO2-WO3-Bi2O3 (TWB) glass has been investigated. The transition probabilities, excited state lifetimes, and the branching ratios have been predicted for Er3+ based on the Judd-Ofelt theory. The broad 1.5 microm fluorescence was observed under 970 nm excitation, and its full width at half maximum (FWHM) is 77 nm. The emission cross-section is calculated using the McCumber theory, and the peak emission cross-section is 1.03 x 10(-21) cm2 at 1.531 microm. This value is much larger than those of the silicate and phosphate glasses. Efficient green and weak red upconversion luminescence from Er3+ centers in the glass sample was observed at room temperature, and the upconversion excitation processes have been analyzed.  相似文献   

16.
The new pro-ligand 4-methyl-4'-(carbonylamino(2-(tert-butoxycarbonylamino)ethyl))-2,2'-bipyridyl (L1) has been prepared and used to synthesise the complex fac-Re(I)Cl(CO)3(L1) 1 and the complex salts [M(II)(bipy)2(L1)](PF6)2 (M=RuII 8 or OsII 15). Deprotection with trifluoroacetic acid affords the amine-functionalised derivatives fac-Re(I)Cl(CO)3(L2) 2, [M(II)(bipy)2(L2)](PF6)2 (M=RuII 9 or OsII 16) which react with the dianhydride of diethylenetriamine pentaacetic acid (DTPA) to give the binuclear complex {fac-Re(I)Cl(CO)3}2(L3) 3 and the complex salts [{M(II)(bipy)2}2(L3)](PF6)4 (M = RuII 10 or OsII 17). The latter react with salts Ln(OTf)3 to afford a series of 12 heterotrimetallic compounds that contain a lanthanide (Ln) ion in the DTPA binding site; {fac-Re(I)Cl(CO)3}2(L3)LnIII (Ln=Nd 4, Er 5, Yb 6 or Y 7) and [{M(II)(bipy)2}2(L3)LnIII](PF6)(OTf)3 (M=RuII, Ln=Nd 11, Er 12, Yb 13 or Y 14; M=OsII, Ln=Nd 18, Er 19, Yb 20 or Y 21). All of these trimetallic species display absorption bands ascribed to metal-to-ligand charge-transfer (MLCT) excitations, and luminescence measurements show that these excited states can be used to sensitise near-infrared emission from LnIII (Ln=Nd, Er or Yb) ions. Single crystal X-ray structures of L1 and [RuII(bipy)2(L2H)](H2PO4)3.(CH3)2CO.0.8H2O were obtained, the latter revealing the presence of H2PO4- counter anions, the source of which is presumed to be hydrolysis of PF6- ions.  相似文献   

17.
Yb3+-doped MnCl2 and MnBr2 crystals exhibit strong red upconversion luminescence under near-infrared excitation around 10 000 cm(-1) at temperatures below 100 K. The broad red luminescence band is centred around 15 200 cm(-1) for both compounds and identified as the Mn2+ 4T1g-->6A1g transition. Excitation with 10 ns pulses indicates that the upconversion process consists of a sequence of ground-state and excited-state absorption steps. The experimental VIS/NIR photon ratio at 12 K for an excitation power of 191 mW focused on the sample with a 53 mm lens is 4.1% for MnCl2:Yb3+ and 1.2% for MnBr2:Yb3+. An upconversion mechanism based on exchange coupled Yb3+-Mn2+ ions is proposed. Similar upconversion properties have been reported for RbMnCl3:Yb3+, CsMnCl3:Yb3+, CsMnBr3:Yb3+, RbMnBr3:Yb3+, Rb2MnCl4:Yb3+. The efficiency of the upconversion process in these compounds is strongly dependent on the connectivity between the Yb3+ and Mn2+ ions. The VIS/NIR photon ratio decreases by three orders of magnitude along the series of corner-sharing Yb3+-Cl--Mn2+, edge-sharing Yb3+-(Cl-)2-Mn2+ to face-sharing Yb3+-(Br-)3-Mn2+ bridging geometry. This trend is discussed in terms of the dependence of the relevant super-exchange pathways on the Yb(3+)-Mn2+ bridging geometry.  相似文献   

18.
用低温溶剂热法以乙二醇为溶剂合成了Er3+和Yb3+共掺的In2O3纳米晶。用X射线衍射(XRD)、透射电镜(TEM)、漫反射光谱和上转换发光光谱对样品进行了分析。XRD和TEM结果表明,产物为纯的立方相In2O3结构,粒径约为30 nm;漫反射光谱显示了In2O3∶Er3+,Yb3+纳米晶在522、653和975 nm附近有3个吸收带;在980 nm近红外光激发下,样品发射出中心波长为525及555 nm的绿光和662 nm的红光,分别对应于Er3+的2H11/2→4I15/2、4S3/2→4I15/2和4F9/2→4I15/2跃迁;研究了Er3+和Yb3+离子的不同掺杂浓度对发光强度的影响,确定了Yb3+和Er3+离子的最佳掺杂浓度均为3%;双对数曲线显示绿光和红光的发射过程均为双光子吸收过程,对样品的上转换发光机制进行了初步讨论。  相似文献   

19.
First heterometal-organic single source precursors for NaYF(4) nanomaterials as a host matrix for up-conversion emission are reported. These novel heterobimetallic derivatives NaY(TFA)(4)(diglyme) (1), [Na(triglyme)(2)][Y(2)(TFA)(7)(THF)(2)] (2) and Na(2)Y(TFA)(5)(tetraglyme) (3) (TFA = trifluoroacetate), which were fully characterized by elemental analysis, FT-IR and (1)H NMR spectroscopy, TG-DTA data as well as single crystal X-ray structures, are advantageous in terms of being anhydrous and having lower decomposition temperatures in comparison to the homometallic precursor Y(TFA)(3)(H(2)O)(3). In addition, they also contain chelating glyme ligands, which act as capping reagents during decomposition to control the NaYF(4) particle size and render them monodisperse in organic solvents. On decomposition in 1-octadecene, the molecular derivatives 1 and 3 are converted, in the absence of any surfactant or capping reagent, to cubic NaYF(4) nanocrystals at significantly lower temperatures (below 250 °C). At higher temperature, a mixture of the cubic and hexagonal phases was obtained, the relative ratio of the two phases depending on the reaction temperature. A pure hexagonal phase, which is many folds more efficient for UC emission than the cubic phase, was obtained by calcining nanocrystals of mixed phase at 400 °C. In order to co-dope this host matrix with up-converting lanthanide cations, analogous complexes NaLn(TFA)(4)(diglyme) [Ln = Er (4), Tm (5), Yb (6)] and Na(2)Ln(TFA)(5)(tetraglyme) [Ln = Er (7), Yb (8)] were also prepared and characterized. The decomposition in 1-octadecene of suitable combinations and appropriate molar ratios of these yttrium, ytterbium and erbium/thulium derivatives gave cubic and/or hexagonal NaYF(4): Yb(3+), Er(3+)/Tm(3+) nanocrystals (NCs) capped by diglyme or tetraglyme ligands, which were characterized by IR, TG-DTA data, EDX analysis and TEM studies. Surface modification of these NCs by ligand exchange reactions with poly acrylic acid (PAA) and polyethyleneglycol (PEG) diacid 600 was also carried out to render them water soluble. The THF solutions of suitable combinations of the diglyme derivatives were also used to elaborate the thin films of NaYF(4):Yb(3+), Er(3+)/Tm(3+) on a glass or Si wafer substrate by spin coating. The multicolour up-conversion fluorescence was successfully realized in the Yb(3+)/Er(3+) (green/red) and Yb(3+)/Tm(3+) (blue/violet) co-doped NaYF(4) nanoparticles and thin films, which demonstrates that they are promising UC nanophosphors of immense practical interest. The up-conversion excitation pathways for the Er(3+)/Yb(3+) and Tm(3+)/Yb(3+) co-doped materials are discussed.  相似文献   

20.
Lanthanide doping not only works as sensitizer and activator, but also plays an important role to facilitate the growth of nanocrystal and to control the size, shape, and property of nanocrystals. Here, reported was the synthesis of monodisperse Ba(2)LaF(7) nanocrystals with the size of sub-10nm through a solvothermal method. We found the dopants of Ho(3+), Er(3+), or Yb(3+) facilitated the growth of Ba(2)LaF(7) nanocrystals obviously to a certain size within a shorter reaction time. Similar phenomenon can also be observed in the synthesis of LaF(3) nanocrystals. We find that Ln(3+) (e.g., Ho(3+), Er(3+), or Yb(3+)) with smaller radius can reduce the nucleation energy and lead to heterogeneous nucleation, which favors the growth of Ba(2)LaF(7) nanocrystals obviously. In addition, intense upconversion emission can be observed from Ln(3+)-doped Ba(2)LaF(7) nanocrystals under the 980 nm laser excitation, providing great potential application in biological imaging. Especially, Ba(2)LaF(7):Yb/Er (20/1 mol%) nanocrystals present more intense upconversion emission than α-NaYF(4):Yb/Er (20/1 mol%) nanocrystals under the same conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号