首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An effective way to prepare graphene oxide/carbon fiber hybrid fiber was proposed by the treatment with hydrogen peroxide and concentrated nitric acid combined with electrophoretic deposition process. Surface functional group, surface roughness, and surface morphologies of carbon fibers were examined by Fourier transform infrared spectrometer, atomic force microscopy, and scanning electron microscopy. Results showed that a uniform and thick graphene oxide films were constructed on the surface of carbon fiber. Deposition density increased by introduction of pretreatment of the carbon fiber in the electrophoretic deposition process has been shown as a possible method. Dynamic contact angle analysis results indicated that the deposition of graphene oxide significantly improved surface free energy of carbon fiber by increasing surface area and polar groups. The introduction of graphene oxide in the carbon fiber‐reinforced epoxy composites results in a 55.6% enhancement in the interfacial shear strength and confirms the remarkable improvement in the interfacial adhesion strength of the composites, and the fracture mechanism was also analyzed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Carbon fibers were coated in an attempt to improve the interfacial properties between carbon fibers and ultra‐high molecular weight polyethylene resin matrix. Atomic force microscopy, scanning electron microscopy, and X‐ray photoelectron spectroscopy were performed to characterize the changes of carbon fiber surface. Atomic force microscopy results show that the coating of carbon fiber significantly increased the carbon fiber surface roughness. X‐ray photoelectron spectroscopy indicates that silicon containing functional groups obviously increased after modification. Interlaminar shear strength was used to characterize the interfacial properties of the composites.  相似文献   

3.
In this paper, by electrophoretic deposition of graphene oxide (GO) on the surface of high‐strength glass fabric, a new fabric/poly(phthalazione ether sulfone ketone) (PPESK) composites material was successfully fabricated. The effects of GO on the interfacial adhesion, interlaminar shear strength, and tribological properties of the composites were investigated. Because of the addition of GO, the interlaminar shear strength of the composites was enhanced by 36.04%. Besides, the scanning electron microscope observation revealed that the interfacial adhesion between PPESK matrix and glass fabric was greatly improved. Attributing to the good interfacial adhesion, the wear‐resistance of the fabric/PPESK composite was greatly enhanced. Moreover, it can be found that the failure location transferred from the interface to the matrix after GO deposition.  相似文献   

4.
Graphene possesses unique physical and chemical properties, which have inspired a wide range of potential biomedical applications. However, little is known about the adverse effects of graphene on the human body and ecological environment. The purpose of our work is to make assessment on the toxicity of graphene oxide (GO) against human cell line (human bone marrow neuroblastoma cell line and human epithelial carcinoma cell line) and zebrafish (Danio rerio) by comparing the toxic effects of GO with its sister, multi-walled carbon nanotubes (MWNTs). The results show that GO has a moderate toxicity to organisms since it can induce minor (about 20%) cell growth inhibition and slight hatching delay of zebrafish embryos at a dosage of 50 mg/L, but did not result in significant increase of apoptosis in embryo, while MWNTs exhibit acute toxicity leading to a strong inhibition of cell proliferation and serious morphological defects in developing embryos even at relatively low concentration of 25 mg/L. The distinctive toxicity of GO and MWNTs should be ascribed to the different models of interaction between nanomaterials and organisms, which arises from the different geometric structures of nanomaterials. Collectively, our work suggests that GO does actual toxicity to organisms posing potential environmental risks and the result is also shedding light on the geometrical structure-dependent toxicity of graphitic nanomaterials.  相似文献   

5.
A polyacrylonitrile‐based carbon fiber was electrochemically oxidized in an aqueous ammonium bicarbonate solution with current density of up to 2.76 A/m2 at room temperature. X‐ray photoelectron spectroscopy revealed that the oxygen content increased with increasing current density before approaching saturation. The increase can be divided into two regions, the rapid increase region (0–1.78 A/m2) and a plateau region (1.78–2.76 A/m2). The surface chemistry analysis showed that the interlaminar shear strength (ILSS) value of the carbon fiber/epoxy composite could be improved by 24.7%. The carbon structure was examined using Raman spectroscopy in terms of order/disorder in the graphite structure and the results indicated that the relative percentage of graphite carbon in the form of sp2 hybridization increased above a current density of 1.39 A/m2. The increasing non‐polar graphite carbon on the carbon fiber surface decreased the surface energy. As a result, both the surface free energy () and its polar component () decreased when current density increased above 1.78 A/m2. The ILSS value had no direct relationship with the nature and surface density of the oxygen‐containing functional groups nor with the carbon structure. It is the surface free energy (), especially the polar component (), which played a critical role in affecting the interfacial adhesion of carbon fiber/epoxy composites. The ILSS value changed with increasing current density and could be divided into three distinct regions, as chemical interaction region (I), anchor force region (II) and matrix damage region (III). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Pitch‐based short carbon fibers (CFs) were treated by air oxidation and cryogenic nitrogen, respectively. Thereafter the treated and untreated CFs were incorporated into polyimide (PI) matrix to form composites. The CFs before and after treatment were examined by XPS and SEM.The flexural strength of the specimen was determined in a three‐point test machine and the tribological properties of PI composites sliding against GCr15 steel rings were evaluated on an M‐2000 model ring‐on‐block test rig. The results show that the surface of the treated CFs became rougher. Lots of active groups formed on the CF surface after air oxidation.The treatment can effectively improve the mechanical and tribological properties in their PI composites due to the enhanced fiber‐matrix interfacial bonding. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
We propose a novel method to uniformly graft high‐density carbon nanotubes (CNTs) onto carbon fiber (CF) by using coupling agents. Coupling agents can supply much more active groups, which is beneficial for grafting high‐density CNTs onto CF surface. After CNT grafting treatment, there are still substantial amounts of reactive groups, which can further react with various types of molecules to meet different requirements. To create chemical bonding between CF and high‐density polyethylene, CF‐CNT was further grafted get reinforcement. The interfacial adhesion of the resulting composites showed a dramatic improvement.  相似文献   

8.
In this work, we reported the synergistic effect of functional carbon nanotubes (CNTs) and graphene oxide (GO) on the anticorrosion performance of epoxy coating. For this purpose, the GO and CNTs were firstly modified by the 3‐aminophenoxyphthalonitrile to realize the nitrile functionalized graphene oxides (GO‐CN) and carbon nanotubes (CNTs‐CN). As modified GO‐CN and CNTs‐CN were characterized and confirmed by Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, and gravimetric analyzer. It was found that about 19 and 24 wt% of 3‐aminophenoxyphthalonitrile were grafted onto the surface of the GO and CNTs, respectively. The electrochemical impedance spectroscopy results showed that the GO‐CN&CNTs‐CN hybrid materials exhibit a remarkable superiority in enhancing the anticorrosion performance of epoxy coatings. Significant synergistic effect of the lamellar structural GO‐CN and CNTs‐CN on the anticorrosion performance of epoxy composite coatings was designed. Besides, the epoxy coating with 1 wt% of the GO‐CN&CNTs‐CN hybrid exhibited the best anticorrosion performance, in which the impedance showed the largest one (immersion in 3.5 wt% of NaCl solution for 168 hr). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, the reduced graphene oxide and multiwall carbon nanotubes hybrid materials (RGO–MWNTs) were prepared and a strategy for detecting environmental contaminations was proposed on the basis of RGO–MWNTs modified electrode. The hybrid materials were characterized by the scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and N2 sorption–desorption isotherms. Due to the excellent catalytic activity, enhanced electrical conductivity and high surface area of the RGO–MWNTs, the simultaneous measurement of hydroquinone (HQ), catechol (CC), p-cresol (PC) and nitrite (NO2) with four well-separate peaks was achieved at the RGO–MWNTs modified electrode. The linear response ranges for HQ, CC, PC and NO2 were 8.0–391.0 μM, 5.5–540.0 μM, 5.0–430.0 μM and 75.0–6060.0 μM, correspondingly, and the detection limits (S/N = 3) were 2.6 μM, 1.8 μM, 1.6 μM and 25.0 μM, respectively. The outstanding film forming ability of RGO–MWNTs hybrid materials endowed the modified electrode enhanced stability. Furthermore, the fabricated sensor was applied for the simultaneous determination of HQ, CC, PC and NO2 in the river water sample.  相似文献   

10.
《先进技术聚合物》2018,29(6):1547-1567
Recently, it has been found that carbon nanotubes (CNTs) and graphene could prove to be the most promising carbonaceous fillers in polymers nanocomposites field because of their better structural and functional properties. Their uniform dispersion in polymer matrix leads to significant improvements in their several properties. This paper reviews the effect of nanofillers, ie, CNTs, derivatized CNTs, and graphene on the polycarbonate nanocomposite and its application in aerospace, automobile, sports, electronic sectors, and various industries. The comparative analysis of carbon‐based fillers on the different properties of polycarbonate nanocomposites is also included.  相似文献   

11.
The distributions of positive carbon cluster ions produced by laser ablation of graphene (G) and graphene oxide (GO) are found to be quite different. Under a typical experimental condition, narrow distributions of even‐numbered clusters from to were observed for G, and broad distributions including even‐numbered clusters from to and odd‐numbered clusters from to were observed for GO. The threshold of laser energy for G is lower than that of GO. Further results of collision‐activated dissociation mass spectrometry indicate that the cluster ions generated from G are structurally similar but are different with those generated from GO or nanodiamonds. It is proposed that the experimentally observed difference can be attributed to the different mechanisms behind the process. A top‐down mechanism including both direct transformation of G to fullerene and fragmentation of large‐sized fullerenes is suggested for the generation of carbon cluster cations in the process of laser ablation of G. For GO, the experimental results are close to those of nanodiamonds and other materials reported previously and can be explained by the generally accepted bottom‐up mechanism. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Free-rising silicone foams were made with loading fractions of up to 0.25 wt.-% functionalized graphene sheets (FGS) and up to 1.0 wt.-% carbon nanotubes (CNTs) using hydrogen as blowing agent. Scanning electron microscopy of the samples revealed an open cellular structure and a homogeneous dispersion of both types of nanofillers. The incorporation of nanofiller affected the foaming process and thus the final foam density and cellular structure. Transmission electron microscopy revealed the formation of a CNT network throughout the sample, while FGS presented an exfoliated and intercalated dispersion. The thermal stability of the samples was drastically affected by the presence of both nanofillers. Both nanofillers showed a positive effect on the compressive response of the foams. However, the nanocomposite foams were found to decrease the acoustic absorption with nanofiller content probably due to the variable foam structure and improved stiffness.  相似文献   

13.
We have successfully developed a new methodology for the self-organization of C(60) molecules on the sidewall of carbon nanotubes for use in photoelectrochemical devices. Novel nanocarbon composites of fullerene (e.g., C(60)) and highly soluble, chemically functionalized single-walled carbon nanotubes (f-SWNT) have been prepared by the rapid injection of a poor solvent (e.g., acetonitrile) into a mixed solution of C(60) and f-SWNT in o-dichlorobenzene. Measurements by using scanning electron microscopy of cast samples revealed that the composites are categorized into three groups; i) f-SWNT bundles covered with layers of C(60) molecules, ii) round, large C(60) clusters (sizes of 500-1000 nm) containing f-SWNT, and iii) typical, round C(60) clusters (sizes of 150-250 nm). The electrophoretic deposition of the composites onto a nanostructured SnO(2) electrode yielded the hierarchical film with a gradient composition depending on the difference in the mobilities of C(60) and f-SWNT during the electrophoretic process. The composite film exhibited an incident photon-to-photocurrent efficiency as high as 18 % at lambda=400 nm under an applied potential of 0.05 V vs. SCE. The photocurrent generation efficiency is the highest value among carbon nanotube-based photoelectrochemical devices in which carbon nanotubes are deposited electrophoretically, electrostatically or covalently onto semiconducting electrodes. The highly aligned structure of C(60) molecules on f-SWNT can rationalize the efficient photocurrent generation. The results obtained here will provide valuable information on the design of carbon nanotube-based molecular devices.  相似文献   

14.
A magnetic composite of multiwalls carbon nanotubes (MWNTs) decorated with iron oxide nanoparticles was synthesized successfully by a simple and effective chemistry precipitation method. The composite was characterized by X-ray diffraction analysis (XRD), Mössbauer spectrum (MS), transmission electron microscopy (TEM), and Fourier transform spectroscopy (FTIR) techniques. The patterns of XRD and MS indicated that MWNTs, γ-Fe2O3, and Fe3O4 coexisted in the composite. The TEM observation indicated that the nanoparticles of iron oxide were attached on the surface of the MWNTs, and the sizes of the particles ranged from 25 to 80 nm. FTIR spectra showed that SO4 functional groups existed on the surface of MWNTs after modification by sodium dodecylbenzene sulfonic acid (SDBS), which could immobilize Fe3+ ions onto the MWNTs. The hysteresis loops of the MWNTs and decorated MWNTs were measured by vibrating sample magnetometer (VSM), and the results showed that the composite was ferromagnetism with the saturated magnetization of 20.07 emu/g, and the coercive of 163.44 Oe.  相似文献   

15.
Redox behavior of thin films of polybithiophene deposited on substrates of conducting glass and single- or multi-walled carbon nanotubes is studied at positive potentials in a 0.1 M (C4H9)4NBF4 solution in acetonitrile. The polymers formal doping-undoping potentials are nearly the same for all substrates, which points to the absence of any marked donor-acceptor interaction between nanotubes and polybithiophene. Some polybithiophene electrochemical characteristics (reversibility, doping degree) are improved when deposited onto nanotubes, probably due to the developed surface of the electrode based on carbon nanotubes.__________Translated from Elektrokhimiya, Vol. 41, No. 4, 2005, pp. 501–509.Original Russian Text Copyright © 2005 by Ovsyannikova, Efimov, Moravsky, Loutfy, Krinichnaya, Alpatova.  相似文献   

16.
《Mendeleev Communications》2023,33(4):572-573
To solve environmental problems caused by the spill of oil and other organic liquids, we have developed graphene/hollow carbon fiber composite aerogels (G-CF) with a low density, high hydrophobicity, buoyancy, and adsorption capacity up to 42.7 g g–1.  相似文献   

17.
Through the functionalization of multiwalled carbon nanotubes (MWCNTs) by 0,0′‐diallylbisphenol A (DBA), the interface situation between MWCNTs and bismaleimide (BMI) was improved, as detected by scanning electron microscope (SEM) and dynamic mechanical analysis (DMA). The improved interface situation was considered to be the main reason for the huge increased microhardness value and greatly improved the microtribological property of MWCNTs/BMI composites. Besides, the wear mechanism for the composite was also believed to be related to the interfacial situation. The rough wavelike worn surface of pure BMI resin is attributed to its poor load capacity. The smoother waterfall‐shape worn surface of MWCNTs/BMI is related to the interface formed by the addition of MWCNTs while the ultrasmooth worn surface of DBA modified MWCNTs/BMI is due to the greatly improved interfacial interaction of the composite. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
In this work, dodecylamine‐modified graphene nanosheets (DA‐GNSs) and γ‐aminopropyl‐triethoxysilane‐treated multiwalled carbon nanotubes (f‐MWCNTs) are employed to prepare cyanate ester (CE) thermally conductive composites. By adding 5 wt% DA‐GNSs or f‐MWCNTs to the CE resin, the thermal conductivities of the composites became 3.2 and 2.5 times that of the CE resin, respectively. To further improve the thermal conductivity, a mixture of the two fillers was utilized. A remarkable synergetic effect between the DA‐GNSs and f‐MWCNTs on improving the thermal conductivity of CE resin composites was demonstrated. The composite containing 3 wt% hybrid filler exhibited a 185% increase in thermal conductivity compared with pure CE resin, whereas composites with individual DA‐GNSs and f‐MWCNTs exhibited increases of 158 and 108%, respectively. Moreover, the composite with hybrid filler retained high electrical resistivity. Scanning electron microscopy images of the composite morphologies showed that the modified graphene nanosheets (GNSs) and multiwalled carbon nanotubes (MWCNTs) were uniformly dispersed in the CE matrix, and a number of junction points among MWCNTs and between MWCNTs and GNSs formed in the composites with hybrid fillers. Generally, we can conclude that these composites filled with hybrid fillers may be promising materials of further improving the thermal conductivity of CE composites. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Multiwalled carbon nanotubes (MWCNTs) were functionalized with two types of chemical moieties (i.e. carboxylic, ? COOH and hydroxyl benzoic acid groups, ‐HBA) on their sidewalls in order to improve their interaction with a liquid crystalline polymer (LCP) and dispersion in LCP. We have investigated the rheological, mechanical, dynamic mechanical, and thermal properties in detail with variation of HBA‐functionalized MWCNTs in the LCP matrix. Effect of the dispersion state of the functionalized MWCNTs in the LCP matrix on the rheological behavior was also studied. The composites containing HBA‐functionalized MWCNTs showed higher complex viscosity, storage, and loss modulus than the composites with the same loading of raw MWCNTs and MWCNT‐COOH. It was suggested that the HBA‐functionalized MWCNTs exhibited a better dispersion in the polymer matrix and formed stronger CNT‐polymer interaction in the composites than the raw MWCNTs and MWCNT‐COOH, which was also confirmed by FESEM and FTIR studies. As a result, the overall mechanical performance of the HBA‐MWCNT‐LCP composites could be improved significantly. For example, the addition of 4 wt% HBA‐MWCNT to LCP resulted in the considerable improvements in the tensile strength and modulus of LCP (by 66 and 90%, respectively). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
《先进技术聚合物》2018,29(1):407-416
Graphene nanoplatelets are promising candidates for enhancing the electrical conductivity of composites. However, because of their poor dispersion, graphene nanoplatelets must be added in large amounts to achieve the desired electrical properties, but such large amounts limit the industrial application of graphene nanoplatelets. Multi‐walled carbon nanotubes also possess high electrical conductivity accompanied by poor dispersion. Therefore, a synergistic effect was generated between graphene nanoplatelets and multi‐walled carbon nanotubes and used for the first time to prepare antistatic materials with high‐density polyethylene via 1‐step melt blending. The synergistic effect makes it possible to significantly improve the electrical properties by adding a small amount of untreated graphene nanoplatelets and multi‐walled carbon nanotubes and increases the possibility of using graphene nanoplatelets in industrial applications. When only 1 wt% graphene nanoplatelets and 0.5 wt% multi‐walled carbon nanotubes were added, the surface and volume resistivity values of the composites were much lower than those of the composites that were only added 3 wt% graphene nanoplatelets. Additionally, as a result of the synergistic effect of graphene nanoplatelets and multi‐walled carbon nanotubes, the composites met the requirements for antistatic materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号