首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
We establish a two‐wave mode equation for the integrable Kadomtsev–Petviashvili equation, which describes the propagation of two different wave modes in the same direction simultaneously. We determine the necessary conditions that make multiple soliton solutions exist for this new equation. The simplified Hirota's method will be used to conduct this work. We also use other techniques to obtain other set of periodic and singular solutions for the two‐mode Kadomtsev‐Petviashvili equation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
The goal of clustering is to detect the presence of distinct groups in a dataset and assign group labels to the observations. Nonparametric clustering is based on the premise that the observations may be regarded as a sample from some underlying density in feature space and that groups correspond to modes of this density. The goal then is to find the modes and assign each observation to the domain of attraction of a mode. The modal structure of a density is summarized by its cluster tree; modes of the density correspond to leaves of the cluster tree. Estimating the cluster tree is the primary goal of nonparametric cluster analysis. We adopt a plug-in approach to cluster tree estimation: estimate the cluster tree of the feature density by the cluster tree of a density estimate. For some density estimates the cluster tree can be computed exactly; for others we have to be content with an approximation. We present a graph-based method that can approximate the cluster tree of any density estimate. Density estimates tend to have spurious modes caused by sampling variability, leading to spurious branches in the graph cluster tree. We propose excess mass as a measure for the size of a branch, reflecting the height of the corresponding peak of the density above the surrounding valley floor as well as its spatial extent. Excess mass can be used as a guide for pruning the graph cluster tree. We point out mathematical and algorithmic connections to single linkage clustering and illustrate our approach on several examples. Supplemental materials for the article, including an R package implementing generalized single linkage clustering, all datasets used in the examples, and R code producing the figures and numerical results, are available online.  相似文献   

3.
In this work, we study the two‐mode Korteweg–de Vries (TKdV) equation, which describes the propagation of two different waves modes simultaneously. We show that the TKdV equation gives multiple soliton solutions for specific values of the nonlinearity and dispersion parameters involved in the equation. We also derive other distinct exact solutions for general values of these parameters. We apply the simplified Hirota's method to study the specific of the parameters, which gives multiple soliton solutions. We also use the tanh/coth method and the tan/cot method to obtain other set of solutions with distinct physical structures. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
If higher-order finite elements are used to discretize the wave equation, spurious modes may occur. These modes are classified as unphysical and supposedly make elements of high order useless for accurate computations. This is in conflict with numerical experiments which appear to provide good results. Here Fourier analysis is used to investigate the behaviour of the numerical error for a number of higher-order one-dimensional finite elements. It is shown that the spurious modes have a contribution to the numerical error that behaves in a reasonable manner, and that higher-order elements can be more accurate than lower-order elements. Lumped elements with Gauss–Lobatto nodes appear to be the best choice.  相似文献   

5.
In this work we study the appearance of spurious solutions when first-order differential equations with unimodal right-hand sides are discretized using Runge-Kutta schemes. These spurious solutions are explained in terms of the iteration functions. Schemes that produce good approximating solutions for much longer times are given.  相似文献   

6.
In this paper, we will establish the bounded solutions, periodic solutions, quasiperiodic solutions, almost periodic solutions, and almost automorphic solutions for linearly coupled complex cubic‐quintic Ginzburg‐Landau equations, under suitable conditions. The main difficulty is the nonlinear terms in the equations that are not Lipschitz‐continuity, traditional methods cannot deal with the difficulty in our problem. We overcome this difficulty by the Galerkin approach, energy estimate method, and refined inequality technique.  相似文献   

7.
This paper deals with an adaptive technique to compute structural-acoustic vibration modes. It is based on an a posteriori error estimator for a finite element method free of spurious or circulation nonzero-frequency modes. The estimator is shown to be equivalent, up to higher order terms, to the approximate eigenfunction error, measured in a useful norm; moreover, the equivalence constants are independent of the corresponding eigenvalue, the physical parameters, and the mesh size. This a posteriori error estimator yields global upper and local lower bounds for the error and, thus, it may be used to design adaptive algorithms. We propose a local refinement strategy based on this estimator and present a numerical test to assess the efficiency of this technique.  相似文献   

8.
In this continuing paper of (Zhu and Qiu, J Comput Phys 318 (2016), 110–121), a new fifth order finite difference weighted essentially non‐oscillatory (WENO) scheme is designed to approximate the viscosity numerical solution of the Hamilton‐Jacobi equations. This new WENO scheme uses the same numbers of spatial nodes as the classical fifth order WENO scheme which is proposed by Jiang and Peng (SIAM J Sci Comput 21 (2000), 2126–2143), and could get less absolute truncation errors and obtain the same order of accuracy in smooth region simultaneously avoiding spurious oscillations nearby discontinuities. Such new WENO scheme is a convex combination of a fourth degree accurate polynomial and two linear polynomials in a WENO type fashion in the spatial reconstruction procedures. The linear weights of three polynomials are artificially set to be any random positive constants with a minor restriction and the new nonlinear weights are proposed for the sake of keeping the accuracy of the scheme in smooth region, avoiding spurious oscillations and keeping sharp discontinuous transitions in nonsmooth region simultaneously. The main advantages of such new WENO scheme comparing with the classical WENO scheme proposed by Jiang and Peng (SIAM J Sci Comput 21 (2000), 2126–2143) are its efficiency, robustness and easy implementation to higher dimensions. Extensive numerical tests are performed to illustrate the capability of the new fifth WENO scheme. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1095–1113, 2017  相似文献   

9.
We study the Dirichlet problem for the stationary Oseen equations around a rotating body in an exterior domain. Our main results are the existence and uniqueness of weak and very weak solutions satisfying appropriate Lq‐estimates. The uniqueness of very weak solutions is shown by the method of cut‐off functions with an anisotropic decay. Then our existence result for very weak solutions is deduced by a duality argument from the existence and estimates of strong solutions. From this and interior regularity of very weak solutions, we finally establish the complete D1,r‐result for weak solutions of the Oseen equations around a rotating body in an exterior domain, where 4/3<r <4. Here, D1,r is the homogeneous Sobolev space.  相似文献   

10.
Mathematical models used to describe porous medium flow lead to coupled systems of time‐dependent partial differential equations. Standard methods tend to generate numerical solutions with nonphysical oscillations or numerical dispersion along with spurious grid‐orientation effect. The MMOC‐MFEM time‐stepping procedure, in which the modified method of characteristics (MMOC) is used to solve the transport equation and a mixed finite element method (MFEM) is used for the pressure equation, simulates porous medium flow accurately even if large spatial grids and time steps are used. In this article we prove an optimal‐order error estimate for a family of MMOC‐MFEM approximations. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

11.
Carolin Trinks  Peter Ruge 《PAMM》2005,5(1):699-700
In this paper, the stability of fractional differential equations is addressed. A criterion for the identification of spurious modes is derived. Two techniques for the a posteriori elimination of the corresponding solution parts are presented. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
By using an approach developed by one of the authors, approximate solutions of the soft periodic boundary conditions for a two-cell reaction diffusion model have been obtained. The system is considered with reactant A and autocatalyst B. The reaction is taken cubic in the autocatalyst in the two-cell with linear exchange through A. The formal exact solution is obtained which is symmetric with respect to the mid-point of the container. Approximate solutions are found through the Picard iterative sequence of solutions constructed after the exact one. It is found that the solution obtained is not unique. When the initial conditions are periodic, the most dominant modes initiate to traveling waves in systems with moderate size. Symmetric configurations forming a parabolic one for large time are observed. In systems of large size, spatially symmetric chaos are produced which are stationary in time. Furthermore, it is found the symmetric pattern formation hold irrespective of the condition of linear instability against small spatial disturbance.  相似文献   

13.
θ方法解滞时微分方程的动力学性质   总被引:1,自引:0,他引:1  
本文研究求解滞时微分方程的θ-方法数值解的渐近性和方程真实解的关系。首先,我们把数值方法看成以步长为参数的动力系统,考察非线性滞时微分方程θ-方法的数值稳定性。并且证明了A-稳定的θ-方法是NP-稳定的。其次我们证明了θ-方法没有伪不动点,还研究了伪周期2解的存在性。最后我们给出一个例子说明了滞时微分方程θ-方法产生的伪周期2解是不稳定的。  相似文献   

14.
The aim of this article is to present several computational algorithms for numerical solutions of a nonlinear finite difference system that represents a finite difference approximation of a class of fourth‐order elliptic boundary value problems. The numerical algorithms are based on the method of upper and lower solutions and its associated monotone iterations. Three linear monotone iterative schemes are given, and each iterative scheme yields two sequences, which converge monotonically from above and below, respectively, to a maximal solution and a minimal solution of the finite difference system. This monotone convergence property leads to upper and lower bounds of the solution in each iteration as well as an existence‐comparison theorem for the finite difference system. Sufficient conditions for the uniqueness of the solution and some techniques for the construction of upper and lower solutions are obtained, and numerical results for a two‐point boundary‐value problem with known analytical solution are given. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17:347–368, 2001  相似文献   

15.
We consider the periodic problem for 2‐fluid nonisentropic Euler‐Poisson equations in semiconductor. By choosing a suitable symmetrizers and using an induction argument on the order of the time‐space derivatives of solutions in energy estimates, we obtain the global stability of solutions with exponential decay in time near the nonconstant steady‐states for 2‐fluid nonisentropic Euler‐Poisson equations. This improves the results obtained for models with temperature diffusion terms by using the pressure functions pν in place of the unknown variables densities nν.  相似文献   

16.
Summary. The element residual method for a posteriori error estimation is analyzed for degree finite element approximation on quadrilateral elements. The influence of the choice of subspace used to solve the element residual problem is studied. It is shown that the resulting estimators will be consistent (or asymptotically exact) for all if and only if the mesh is parallel. Moreover, even if the mesh consists of rectangles, then the estimators can be inconsistent when . The results provide concrete guidelines for the selection of a posteriori error estimators and establish the limits of their performance. In particular, the use of the element residual method for high orders of approximation (such as those arising in the - version finite element method) is vindicated. The mechanism behind the rather poor performance of the estimators is traced back to the basic formulation of the residual problem. The investigations reveal a deficiency in the formulation, leading, as it does, to spurious modes in the true solution of the residual problem. The recommended choice of subspaces may be viewed as being sufficient to guarantee that the spurious modes are filtered out from the approximate solution while at the same time retaining a sufficient degree of approximation to represent the true modes. Received February 27, 1995 / Revised version received June 7, 1995  相似文献   

17.
In this study, we discuss some limit analysis of a viscous capillary model of plasma, which is expressed as a so‐called the compressible Navier‐Stokes‐Poisson‐Korteweg equation. First, the existence of global smooth solutions for the initial value problem to the compressible Navier‐Stokes‐Poisson‐Korteweg equation with a given Debye length λ and a given capillary coefficient κ is obtained. We also show the uniform estimates of global smooth solutions with respect to the Debye length λ and the capillary coefficient κ. Then, from Aubin lemma, we show that the unique smooth solution of the 3‐dimensional Navier‐Stokes‐Poisson‐Korteweg equations converges globally in time to the strong solution of the corresponding limit equations, as λ tends to zero, κ tends to zero, and λ and κ simultaneously tend to zero. Moreover, we also give the convergence rates of these limits for any given positive time one by one.  相似文献   

18.
A finite‐volume scheme for the stationary unipolar quantum drift‐diffusion equations for semiconductors in several space dimensions is analyzed. The model consists of a fourth‐order elliptic equation for the electron density, coupled to the Poisson equation for the electrostatic potential, with mixed Dirichlet‐Neumann boundary conditions. The numerical scheme is based on a Scharfetter‐Gummel type reformulation of the equations. The existence of a sequence of solutions to the discrete problem and its numerical convergence to a solution to the continuous model are shown. Moreover, some numerical examples in two space dimensions are presented. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1483–1510, 2011  相似文献   

19.
In the current study, an approximate scheme is established for solving the fractional partial differential equations (FPDEs) with Volterra integral terms via two‐dimensional block‐pulse functions (2D‐BPFs). According to the definitions and properties of 2D‐BPFs, the original problem is transformed into a system of linear algebra equations. By dispersing the unknown variables for these algebraic equations, the numerical solutions can be obtained. Besides, the proof of the convergence of this system is given. Finally, several numerical experiments are presented to test the feasibility and effectiveness of the proposed method.  相似文献   

20.
In this work we study an Ambrosetti‐Prodi type problem for an elliptic system involving p‐Laplacian operator. The sub and supersolution method and the Leray‐Schauder Degree Theory are used in order to prove our result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号