首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) positive and negative ion spectra of poly(2‐vinylpyridine) (P2VP) and poly(4‐vinylpyridine) (P4VP) were analyzed using density functional theory calculations. Most of the ions from these structural isomers shared the same accurate mass, but had different relative abundance. This could be attributed to the fact that from a thermodynamics perspective, the disparity in the molecular structures can affect the ion stability if we assume that they shared the same mechanistic pathway of formation with similar reaction kinetics. The molecular structures of these ions were assigned, and their stability was evaluated based on calculations using the Kohn‐Sham density functional theory with Becke's 3‐parameter Lee‐Yang‐Parr exchange‐correlation functional and a correlation‐consistent, polarized, valence, double‐zeta basis set for cations and the same basis set with a triple‐zeta for anions. The computational results agreed with the experimental observations that the nitrogen‐containing cations such as C5H4N+ (m/z = 78), C8H7N (m/z = 117), C8H8N+ (m/z = 118), C9H8N+ (m/z = 130), C13H11N2+ (m/z = 195), C14H13N2+ (m/z = 209), C15H15N2+ (m/z = 223), and C21H22N3+ (m/z = 316) ions were more favorably formed in P2VP than in P4VP due to higher ion stability because the calculated total energies of these cations were more negative when the nitrogen was situated at the ortho position. Nevertheless, our assumption was invalid in the formation of positive ions such as C6H7N+˙ (m/z = 93) and C8H10N+ (m/z = 120). Their formation did not necessarily depend on the ion stability. Instead, the transition state chemistry and the matrix effect both played a role. In the negative ion spectra, we found that nitrogen‐containing anions such as C5H4N? (m/z = 78), C6H6N? (m/z = 92), C7H6N? (m/z = 104), C8H6N? (m/z = 116), C9H10N? (m/z = 132), C13H11N2? (m/z = 195), and C14H13N2? (m/z = 209) ions were more favorably formed in P4VP, which is in line with our computational results without exception. We speculate that whether anions would form from P2VP and P4VP is more dependent on the stability of the ions.  相似文献   

2.
Poly(styrene) (PS), poly(2,3,4,5,6‐pentafluorostyrene) (5FPS) and their random copolymers were prepared by bulk radical polymerization. The spin‐cast polymer films of these polymers were analyzed using X‐ray photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS). The surface and bulk compositions of these copolymers were found to be same, implying that surface segregation did not occur. The detailed analysis of ToF‐SIMS spectra indicated that the ion fragmentation mechanism is similar for both PS and 5FPS. ToF‐SIMS quantitative analysis using absolute peak intensity showed that the SIMS intensities of positive styrene fragments, particularly C7H7+, in the copolymers are higher than the intensities expected from a linear combination of PS and 5FPS, while the SIMS intensities of positive pentafluorostyrene fragments are smaller than expected. These results indicated the presence of matrix effects in ion formation process. However, the quantitative approach using relative peak intensity showed that ion intensity ratios are linearly proportional to the copolymer mole ratio when the characteristic ions of PS and 5FPS are selected. This suggests that quantitative analysis is still possible in this copolymer system. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) equipped with a bismuth imaging source and an argon gas cluster ion beam (GCIB) was used to image polished cross‐sections of four automotive multilayer paint samples. Secondary ion mass spectrometry chemical imaging of the individual layers was possible after a GCIB sputter ion dose of (7 × 1015) ions/cm2 was applied for the removal of polishing residue, at which point the chemical composition of the individual clear coats could be distinguished using principal components analysis. For the differentiation of the four clear coat chemistries, only four secondary ion peaks were necessary; C2H5O+ (m/z 45.04), C9H9NO2+ (m/z 163.09), and C10H11NO2+ (m/z 177.10) that appeared to be fragments of the carbamate‐based clear coat, and C7H11+ (m/z 95.09) that was strongly associated with the polyurethane‐based clear coat. Clear identification of the four paint samples based on this short peak list highlights the strength of the SIMS technique as a potential forensic approach to discriminate automotive paints and suggests that many more variables could be included in the multivariate and statistical analysis to differentiate a wider range of clear coat chemistries.  相似文献   

4.
Different salts of the 2‐phenyl‐1,10‐phenanthrolin‐1‐ium cation, (pnpH)+, are obtained by reacting 2‐phenyl‐1,10‐phenanthroline (pnp), C18H12N2, (I), with a variety of anions, such as hexafluoridophosphate, C18H13N2+·PF6, (II), trifluoromethanesulfonate, C18H13N2+·CF3SO3, (III), tetrachloridoaurate, (C18H13N2)[AuCl4], (IV), and bromide (as the dihydrate), C18H13N2+·Br·2H2O, (V). Compound (I) crystallizes with Z′ = 2, with both independent molecules adopting a coplanar conformation. In (II)–(IV), a hydrogen bond exists between the cation and anion, while one of the lattice water molecules serves as a hydrogen‐bonded bridge between the cation and anion in (V). Reaction of (I) with HAuCl4 gives the salt complex (IV); however, reaction with KAuCl4 produces the monodentate complex trichlorido(2‐phenyl‐1,10‐phenanthroline‐κN10)gold(III), [AuCl3(C18H12N2)], (VI). Dichlorido(2‐phenyl‐1,10‐phenanthroline‐κ2N,N′)copper(II), [CuCl2(C18H12N2)], (VII), results from the reaction of CuCl2·2H2O and (I), in which the CuII center adopts a tetrahedrally distorted square‐planar geometry. The pendent phenyl ring twists to a bisecting position relative to the phenanthroline plane. The square‐planar PdII complex, bromido[2‐(phenanthrolin‐2‐yl)phenyl‐κ3C1,N,N′]palladium(II), [PdBr(C18H11N2)], (VIII), is obtained from the reaction of (I) with [PdCl2(cycloocta‐1,5‐diene)], followed by addition of bromine. A coplanar geometry for the pendent ring is adopted as a result of the tridentate bonding motif.  相似文献   

5.
We report the observation of a new physical phenomenon of the addition of 2 hydrogen atoms to molecular ions thus forming [M + 2H]+ ions. We demonstrate such second hydrogen atom abstraction onto the molecular ions of pentaerythritol and trinitrotoluene (TNT). We used both gas chromatography mass spectrometry (GC‐MS) with supersonic molecular beam (SMB) with methanol added into its make‐up gas and electron ionization (EI) liquid chromatography mass spectrometry (LC‐MS) with SMB with methanol as the LC solvent. We found that the formation of methanol clusters resulted upon EI in the formation of dominant protonated pentaerythritol ion at m/z = 137 plus about 70% relative abundance of pentaerythritol molecular ion with 2 additional hydrogen atoms at m/z = 138 which is well above the 5.7% natural C13 isotope abundance of protonated pentaerythritol. Similarly, we found an abundant protonated TNT ion at m/z = 228 and a similar abundance of TNT molecular ion with 2 additional hydrogen atoms at m/z = 229. Upon the use of deuterated methanol (CD3OD) as the solvent, we observed an abundant m/z = 231 (M + 2D)+ of TNT with 2 deuterium atoms. We found such abundant second hydrogen atom abstraction with butylglycolate and at low abundances in dioctylphthalate, Vitamin K3, phenazine, and RDX. At this time, we are unable to report the magnitude and frequency of occurrence of this phenomenon in standard electrospray LC‐MS. This observation could have important implications on the provision of elemental formula from mass spectra that are involved with protonated molecules. Accordingly, while accurate mass measurements can serve for the generation of elemental formula, their further support and improvement via isotope abundance analysis are questionable. Consequently, if a given compound can be analyzed by both GC‐MS and LC‐MS, its GC‐MS analysis can be superior for the provision of accurate elemental formulae if its EI mass spectrum exhibits abundant molecular ions such as with GC‐MS with SMB (also known as cold EI).  相似文献   

6.
Defects were created on the surface of highly oriented pyrolytic graphite (HOPG) by sputtering with an Ar+ ion beam, then characterized using X‐ray photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) at 500°C. In the XPS C1s spectrum of the sputtered HOPG, a sp3 carbon peak appeared at 285.3 eV, representing surface defects. In addition, 2 sets of peaks, the Cx and CxH ion series (where x = 1, 2, 3...), were identified in the ToF‐SIMS negative ion spectrum. In the positive ion spectrum, a series of CxH2+• ions indicating defects was observed. Annealing of the sputtered samples under Ar was conducted at different temperatures. The XPS and ToF‐SIMS spectra of the sputtered HOPG after 800°C annealing were observed to be similar to the spectra of the fresh HOPG. The sp3 carbon peak had disappeared from the C1s spectrum, and the normalized intensities of the CxH and CxH2+• ions had decreased. These results indicate that defects created by sputtering on the surface of HOPG can be repaired by high‐temperature annealing.  相似文献   

7.
Three 1‐methyl‐4,4′‐bipyridinium (MQ+)‐based complexes, {[Cd(MQ)(p‐BDC)Br]?H2O}n ( 1 ), {[Cd(MQ)(m‐BDC)(H2O)Br]?3H2O}n ( 2 ) and Cu(MQ)Br2 ( 3 ) (p‐H2BDC = 1,4‐benzenedicarboxylic acid, m‐H2BDC = 1,3‐benzenedicarboxylic acid), have been synthesized and structurally characterized. Compounds 1 and 2 are one‐dimensional coordination polymers constituted of one coordinated MQ+ cation, one coordinated Br? ion and chains of Cd2+ ions connected by deprotonated BDC2? units, which both have photochromism but different decolorization behaviors. The structures and photoresponsive behaviors controlled by auxiliary ligands have been explored. Compound 3 is constituted of one Cu+ center, one MQ+ ligand and two coordinated Br? ions in a ‘V’ configuration, exhibiting no photochromism.  相似文献   

8.
We have investigated gas‐phase fragmentation reactions of protonated benzofuran neolignans (BNs) and dihydrobenzofuran neolignans (DBNs) by accurate‐mass electrospray ionization tandem and multiple‐stage (MSn) mass spectrometry combined with thermochemical data estimated by Computational Chemistry. Most of the protonated compounds fragment into product ions B ([M + H–MeOH]+), C ([ B –MeOH]+), D ([ C –CO]+), and E ([ D –CO]+) upon collision‐induced dissociation (CID). However, we identified a series of diagnostic ions and associated them with specific structural features. In the case of compounds displaying an acetoxy group at C‐4, product ion C produces diagnostic ions K ([ C –C2H2O]+), L ([ K –CO]+), and P ([ L –CO]+). Formation of product ions H ([ D –H2O]+) and M ([ H –CO]+) is associated with the hydroxyl group at C‐3 and C‐3′, whereas product ions N ([ D –MeOH]+) and O ([ N –MeOH]+) indicate a methoxyl group at the same positions. Finally, product ions F ([ A –C2H2O]+), Q ([ A –C3H6O2]+), I ([ A –C6H6O]+), and J ([ I –MeOH]+) for DBNs and product ion G ([ B –C2H2O]+) for BNs diagnose a saturated bond between C‐7′ and C‐8′. We used these structure‐fragmentation relationships in combination with deuterium exchange experiments, MSn data, and Computational Chemistry to elucidate the gas‐phase fragmentation pathways of these compounds. These results could help to elucidate DBN and BN metabolites in in vivo and in vitro studies on the basis of electrospray ionization ESI‐CID‐MS/MS data only.  相似文献   

9.
In this study, polymeric (MW 50 000) and oligomeric (MW 2000) poly (lactic acid) (PLA), both with and without end‐group deuterium exchange, were analysed using static secondary ion mass spectrometry (SSIMS) to investigate the contribution of end‐group‐derived secondary ions to the SSIMS spectra. By monitoring the SSIMS intensities between the non‐deuterated and deuterated PLA, it is evident that the only significant end‐group‐derived secondary ions are [nM + H]+ (n > 1) and C4H9O2+. The gentle‐SIMS (G‐SIMS) methodology was employed to establish that deuterated fragments were produced through low energy processes and were not the result of substantial rearrangements. It was noted that end‐group‐derived secondary ions had higher G‐SIMS intensities for oligomeric PLA than polymeric PLA, showing that these secondary ions are simple fragment products that are not the result of rearrangement or degraded product ions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
We have measured the synchrotron‐induced photofragmentation of isolated 2‐deoxy‐D ‐ribose molecules (C5H10O4) at four photon energies, namely, 23.0, 15.7, 14.6, and 13.8 eV. At all photon energies above the molecule′s ionization threshold we observe the formation of a large variety of molecular cation fragments, including CH3+, OH+, H3O+, C2H3+, C2H4+, CHxO+ (x=1,2,3), C2HxO+ (x=1–5), C3HxO+ (x=3–5), C2H4O2+, C3HxO2+ (x=1,2,4–6), C4H5O2+, C4HxO3+ (x=6,7), C5H7O3+, and C5H8O3+. The formation of these fragments shows a strong propensity of the DNA sugar to dissociate upon absorption of vacuum ultraviolet photons. The yields of particular fragments at various excitation photon energies in the range between 10 and 28 eV are also measured and their appearance thresholds determined. At all photon energies, the most intense relative yield is recorded for the m/q=57 fragment (C3H5O+), whereas a general intensity decrease is observed for all other fragments— relative to the m/q=57 fragment—with decreasing excitation energy. Thus, bond cleavage depends on the photon energy deposited in the molecule. All fragments up to m/q=75 are observed at all photon energies above their respective threshold values. Most notably, several fragmentation products, for example, CH3+, H3O+, C2H4+, CH3O+, and C2H5O+, involve significant bond rearrangements and nuclear motion during the dissociation time. Multibond fragmentation of the sugar moiety in the sugar–phosphate backbone of DNA results in complex strand lesions and, most likely, in subsequent reactions of the neutral or charged fragments with the surrounding DNA molecules.  相似文献   

11.
In the title compound, [Cd(C12H8F2N3)2(C5H5N)2], the Cd atom lies on a crystallographic twofold axis in space group Iba2. The coordination geometry about the CdII ion corresponds to a rhombically distorted octahedron, with two deprotonated 1,3‐bis(2‐fluoro­phenyl)­triazenide ions, viz. FC6H4NNNC6H4F, acting as bidentate ligands (four‐electron donors). Two neutral pyridine (py) mol­ecules complete the coordination sphere in positions cis with respect to one another. The triazenide ligand is not planar (r.m.s. deviation = 0.204 Å), the dihedral angle between the phenyl rings of the terminal 2‐fluoro­phenyl substituents being 24.6 (1)°. The triazenide and pyridine Cd—N distances are 2.3757 (18)/2.3800 (19) and 2.3461 (19) Å, respectively. Intermolecular C—H⋯F interactions generate sheets of mol­ecules in the (010) plane.  相似文献   

12.
The gas‐phase reactions of Aryl―SF5·+ and Aryl―SO2F·+ have been studied with the electron ionization tandem mass spectrometry. Such reactions involve F‐atom migration from the S‐atom to the aryl group affording the product ion Aryl―F·+ by subsequent expulsion of SF4 or SO2, respectively. Especially, the 4‐pentafluorosulfanylphenyl cation 4‐SF5C6H4+ (m/z 203) from 4‐NO2C6H4SF5·+ by loss of ·NO2 could occur multiple F‐atom migration reactions to the product ion C6H4F3+ (m/z 133) by loss of SF2 in the MS/MS process. The gas‐phase reactions of 2,5‐xylylfluoroiodonium (pXyl―I+F, m/z 251) have also been studied using the electrospray tandem mass spectrometry, which involve a similar F‐atom migration process from the I‐atom to the aryl group giving the radical cation of 2‐fluoro‐p‐xylene (or its isomer 4‐fluoro‐m‐xylene, m/z 124) by reductive elimination of an iodine atom. All these gas‐phase F‐atom migration reactions from the heteroatom to the aryl group led to the aryl―F coupling product ions with a new formed CAryl―F bond. Density functional theory calculations were performed to shed light on the mechanisms of these reactions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Long‐chain ferulic acid esters, such as eicosyl ferulate ( 1 ), show a complex and analytically valuable fragmentation behavior under negative ion electrospay collision‐induced dissociation ((?)‐ESI‐CID) mass spectrometry, as studied by use of a high‐resolution (Orbitrap) mass spectrometer. In a strong contrast to the very simple fragmentation of the [M + H]+ ion, which is discussed briefly, the deprotonated molecule, [M – H]?, exhibits a rich secondary fragmentation chemistry. It first loses a methyl radical (MS2) and the ortho‐quinoid [M – H – Me]‐? radical anion thus formed then dissociates by loss of an extended series of neutral radicals, CnH2n + 1? (n = 0–16) from the long alkyl chain, in competition with the expulsion of CO and CO2 (MS3). The further fragmentation (MS4) of the [M – H – Me – C3H7]? ion, discussed as an example, and the highly specific losses of alkyl radicals from the [M – H – Me – CO]‐? and [M – H – Me – CO2]‐? ions provide some mechanistic and structural insights.  相似文献   

14.
A rapid and sensitive LC‐electrospray ionization‐MS method was developed for determining vinorelbine in rat plasma. A 100 µL plasma sample was treated using a protein precipitation procedure and was chromatographed within 4 min using an Inertsil ODS‐3 C18 (2.1 × 50 mm, 5 µm) column. The selected ion monitoring ions [M + H]+ were m/z 779 and m/z 811 for vinorelbine and vinblastine (internal standard), respectively. The method validation showed that the calibration curve for vinorelbine was linear over a concentration range of 1–1000 ng/mL with lower limit of quantification at 1 ng/mL. The method has been successfully applied to pharmacokinetics in rat plasma. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
We have studied the dissociation of the trifluoromethane molecule, CHF3, into negative ionic fragments at the C 1s and F 1s edges. The measurements were performed by detecting coincidences between negative and positive ions. We observed five different negative ions: F?, H?, C?, CF?, and F2?. Their production was confirmed by the analysis of triple coincidence events (negative‐ion/positive‐ion/positive‐ion or NIPIPI coincidences) that were recorded with cleaner signals than those of the negative‐ion/positive‐ion coincidences. The intensities of the most intense NIPIPI coincidence channels were recorded as a function of photon energy across the C 1s and F 1s excitations and ionization thresholds. We also observed dissociation channels involving the formation of one negative ion and three positive ions. Our results demonstrate that negative‐ion/positive‐ion coincidence spectroscopy is a very sensitive method to observe anions, which at inner‐shell edges are up to three orders of magnitude less probable dissociation products than cations.  相似文献   

16.
Crystals of maleates of three amino acids with hydrophobic side chains [L‐leucenium hydrogen maleate, C6H14NO2+·C4H3O4, (I), L‐isoleucenium hydrogen maleate hemihydrate, C6H14NO2+·C4H3O4·0.5H2O, (II), and L‐norvalinium hydrogen maleate–L‐norvaline (1/1), C5H11NO2+·C4H3O4·C5H12NO2, (III)], were obtained. The new structures contain C22(12) chains, or variants thereof, that are a common feature in the crystal structures of amino acid maleates. The L‐leucenium salt is remarkable due to a large number of symmetrically non‐equivalent units (Z′ = 3). The L‐isoleucenium salt is a hydrate despite the fact that L‐isoleucine is a nonpolar hydrophobic amino acid (previously known amino acid maleates formed hydrates only with lysine and histidine, which are polar and hydrophilic). The L‐norvalinium salt provides the first example where the dimeric cation L‐Nva...L‐NvaH+ was observed. All three compounds have layered noncentrosymmetric structures. Preliminary tests have shown the presence of the second harmonic generation (SGH) effect for all three compounds.  相似文献   

17.
This work documents the behaviour of the positive secondary ion yield of bulk polytetrafluoroethylene (PTFE) under dual‐beam depth profiling conditions employing 1 keV Ar+, Cs+ and SF5+. A unique chemical interaction is observed in the form of a dramatic enhancement of the positive secondary ion yield when PTFE is dual‐beam profiled with 1 keV Cs+. The distinct absence of such an enhancement is noted for comparison on two non‐fluorinated polymers, polyethylene terephthalate (PET) and polydimethylsiloxane (PDMS). The bulk PTFE was probed using 15‐keV, 69Ga+ primary ions in dual beam mode under static conditions; 1‐keV Ar+ (a non‐reactive, light, noble element), Cs+ (a heavier metallic ion known to form clusters) and SF5+ (a polyatomic species) served as the sputter ion species. The total accumulated primary ion dose was of the order of 1015 ions/cm2, which is well beyond the static limit. The enhancement of the positive secondary yield obtained when profiling with 1‐keV Cs+ far exceeds that obtained when SF5+ is employed. An explanation of this apparent reactive ion effect in PTFE is offered in terms of polarisation of C? F bonds by Cs+ in the vicinity of the implantation site thereby predisposing them to facile scission. The formation of peculiar, periodic CsxFy+ (where y = x ? 1) and CsxCyFz+ clusters that can extend to masses approaching 2000 amu are also observed. Such species may serve as useful fingerprints for fluorocarbons that can be initiated via pre‐dosing a sample with low‐energy Cs+ prior to static 15‐keV Ga+ analysis. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
19.
The potential energy profiles for the fragmentations that lead to [C5H5O]+ and [C4H6]+? ions from the molecular ions [C5H6O]+? of E‐2,4‐pentadienal were obtained from calculations at the UB3LYP/6‐311G + + (3df,3pd)//UB3LYP/6‐31G(d,p) level of theory. Kinetic barriers and harmonic frequencies obtained by the density functional method were then employed in Rice–Ramsperger–Kassel–Marcus calculations of individual rate coefficients for a large number of reaction steps. The pre‐equilibrium and rate‐controlling step approximations were applied to different regions of the complex potential energy surface, allowing the overall rate of decomposition to be calculated and discriminated between three rival pathways: C? H bond cleavage, decarbonylation and cyclization. These processes should have to compete for an equilibrated mixture of four conformers of the E‐2,4‐pentadienal ions. The direct dissociation, however, can only become important in the high‐energy regime. In contrast, loss of CO and cyclization are observable processes in the metastable kinetic window. The former involves a slow 1,2‐hydrogen shift from the carbonyl group that is immediately followed by the formation of an ion‐neutral complex which, in turn, decomposes rapidly to the strans‐1,3‐butadiene ion [C4H6]+?. The predominating metastable channel is the second one, that is, a multi‐step ring closure which starts with a rate‐limiting cistrans isomerization. This process yields a mixture of interconverting pyran ions that dissociates to the pyrylium ions [C5H5O]+. These results can be used to rationalize the CID mass spectrum of E‐2,4‐pentadienal in a low‐energy regime. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
In this contribution, polystyrene (PS) bearing nitrogen‐rich ligands as chelation moieties for both Ag+ ions and Ag(0) nanoparticles was prepared through successive chemical modifications of native PS including nitration (treatment with HNO3/H2SO4), reductive amination (treatment with SnCl2/HCl), Michael addition of methyl acrylate, and grafting of ethyelenediamine. The as‐synthesized PS derivative was further used to support silver nanoparticles through initial chelation of the silver nanoparticle ions precursor and subsequent chemical in situ reduction with sodium borohydride. Chemical structure of the PS derivatives was confirmed after each synthesis step by using complementary characterization methods including infrared and energy‐dispersive X‐ray spectroscopies, elemental analysis, X‐ray diffraction, thermogravimetric analysis, and scanning electron microscopy. The catalytic activity of the PS‐EAD/AgNP nanocomposite was demonstrated using the reduction of methylene blue to leucomethylene blue, as a model reaction. The reaction was monitored by UV‐vis spectrophotometry and achieved with an excess of sodium borohydride allowing for a pseudo‐first‐order analysis of the kinetic reaction parameters. Quantitative reduction of the methylene blue was obtained upon successive catalytic cycles with a rate constant value of 0.4016 minute?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号