首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The ability to site‐selectively modify micro‐ and nanosized particles has allowed for directed self‐assembly in two and three dimensions. Site‐selective modification of particles can be a complicated task requiring the pre‐organization of particles or enhanced particle fabrication methods. The aluminum silicate, zeolite L has been reported to undergo site‐specific modification at the zeolite channel entrances, post‐fabrication in a solution‐based method. The process by which the channel entrances are site selectively modified is explored here. The preliminary step of charging the zeolite channels with aqueous acid allows for catalysis of covalent bond formation at the channel entrances. Three new end‐specific modification reagents are described based on silanol and silyl ether functional groups. These reagents are purified by column chromatography and characterized by1H NMR spectroscopy and high resolution mass spectrometry (HRMS); they provide for reliable end modification of zeolites L. Preferential reactivity at the channel entrances is also observed. The utility of the approach is demonstrated by modifying zeolite L with adamantane at the channel entrances. Site‐specific self‐assembly with β‐cyclodextrin coated gold nanoparticles can be triggered with a chemical stimulus. The resulting multivalent host‐guest interactions give gold clustered nanoparticles at the ends of the micrometer‐sized zeolites.  相似文献   

2.
Colloidal molecules, or more general supraparticles, i.e., particles which are themselves assembled of smaller nanoparticles in a defined way, are known to be synthesizable via bottom‐up assembly techniques in colloidal dispersion. The amount of synthesizable particles is mostly limited to milligrams. Herein, a bottom‐up‐programed, triggerable top‐down process is reported to obtain core–satellite supraparticles, i.e., particles composed of a larger core particle surrounded by smaller satellite particles. The key is to prepare a nanostructured, microparticulate powder into which defined burst behavior is preprogramed. Once the system is mechanically triggered, it bursts into well‐defined nanosized core–satellite supraparticles. Scale‐up is easily feasible and several hundred grams per batch can be demonstrated. The product is a ready‐to‐use and flexibly processible powder. Upon simple mixing with a polymer, it disintegrates into the preprogramed core–satellite supraparticles, thus forming a highly sophisticated nanocomposite with the polymer matrix. A pure silica nanoparticle system and a silica–iron oxide nanoparticle hybrid system are presented to demonstrate the versatility of the approach. Enhanced mechanical and unexpected magneto‐optical properties with the particle system are found. The disintegration of the microparticles into individual core–satellite colloidal supraparticles is confirmed via in situ liquid cell transmission electron microscopy.  相似文献   

3.
Spherical NaYF4 upconversion nanocrystals with mean radii of about 5 and 11 nm are observed to form colloidal crystals, i.e., 3D assemblies of the particles with long‐range order. The colloidal crystals of the larger particles form directly in solution when dispersions of the particles in toluene are stored at room temperature for several weeks. Crystallization of the smaller particles takes place when their dispersions in hexane are slowly dried at elevated temperatures. The formation and the structure of the colloidal crystals are studied by small‐angle X‐ray scattering (SAXS). SAXS measurements show that the smaller as well as the larger particles assemble into a face‐centered cubic lattice with unit cell dimensions of a = 18.7 nm and a = 35.5 nm, respectively. The SAXS data also show that the particles in the colloidal crystals still bear a layer of oleic acid on their surfaces. The thickness of this layer is 1.5–1.8 nm, as determined by comparing the unit cell dimensions of the colloidal crystals with the mean particle sizes. The latter could be very precisely determined from the distinct oscillations observed in the SAXS data of dilute colloidal dispersions of the nanocrystals.  相似文献   

4.
Novel CO2‐responsive conductive polymer particles based on poly(N‐(3‐amidino)‐aniline) (or PNAAN) are reported in this work. A CO2‐responsive N‐(3‐amidino)‐aniline (NAAN) monomer is firstly synthesized with the pendant amidine group at the meta‐position of aniline (AN) and subsequently polymerized into the PNAAN polymer by chemical oxidation. Self‐assembly of PNAAN in turn forms the polymer particles. In the strong or weak acid media, the amidine group protonates into cationic amidinium and self‐stabilizes the PNAAN particles without the use of any stabilizers. The reaction media are found to affect the polymerization rate and self‐assembly of particles, and hence the size and size distribution of the resultant particles. The particles synthesized in strong basic media show CO2‐responsvie properties since the H+ released by dissolved CO2 (dCO2) can protonate the amidine group into hydrophilic amidinium group and result in swelling of the PNAAN particles. Zeta‐potential measurements show the reversible change of particle surface charges in the presence and absence of dCO2. Dynamic light scattering (DLS) measurements show the particle size linearly changed with dCO2 concentration in the range of 5 × 10?4 and 2.5 × 10?2 atm. This is the first reported CO2‐responsive polyaniline (PANI) particles for dCO2 sensing or reversible fixation of CO2.  相似文献   

5.
Anisotropic and binary colloids self‐assemble into a variety of novel supracolloidal structures within the thermo‐switchable confinement of molecular microtubes, achieving structuring at multiple length scales and dimensionalities. The multistage self‐assembly strategy involving hard colloidal particles and a soft supramolecular template is generic for colloids with different geometries and materials as well as their binary mixtures. The colloidal architectures can be controlled by colloid shape, size, and concentration. Colloidal cubes align in chains with face‐to‐face arrangement, whereas rod‐like colloids predominantly self‐organize in end‐to‐end configurations with their long axis parallel with the long axis of the microtubes. The 1D microconfinement imposed on binary mixtures of anisotropic and isotropic colloids further increases the diversity of colloid‐in‐tube structures. In cube–sphere mixtures, cubes may act as additional confiners, locking in colloidal sphere chains, while a “colloidal Morse code” is generated where rods and spheres alternate in the case of rod–sphere mixtures. The versatile confined colloidal superstructures including their thermoresponsive assembly and disassembly are relevant for the development of stimulus–responsive materials where controlled release and encapsulation are desired.  相似文献   

6.
Arrays of anisotropic particles are sought after for applications in optics, electronics, and energy. Structures assembled from multiple micro‐ or nanoparticles could incorporate the distinct properties of each component to achieve functions not possible from single‐population assemblies. In mixed‐particle populations, the assembly forces may differ between the particle types, which will in turn influence the final assembled structures. Here, binary particle mixtures are studied and compared to assemblies formed from each of the component particles alone. The particles are partially etched nanowires (PENs, ≈300 nm diameter, and 3–8 μm overall length), which are formed by the silica coating and subsequent etching of striped metal nanowires, such that what remains are silica nanotubes containing segments of metal core (Au, Pt, Rh, or Pt/Au) with controllable location and number, spaced by “empty” regions that fill with water. Binary mixtures of PENs with different core metals and segment patterns are examined here to explore how the different core segment material, length, position, and number affects overall self‐assembly behavior.  相似文献   

7.
A novel magnetic composition of the high surface area particles with amide chemical functionality, Sephacryl S‐200, is reported enabling the preparative‐scale (1 L, ≈5–10 mg) separation of metallic and semiconducting single‐walled carbon nanotubes (SWNT) from completely unpurified and uncentrifuged nanotube stocks. Sephacryl S‐200 has previously been utilized in separating semiconducting SWNT (s‐SWNT) on the laboratory scale. Significantly, use of these magnetic derivative particles in absorptive separation of SWNT allows the unprecedented and industrially scalable purification of both metallic SWNT (m‐SWNT) as well as s‐SWNT directly from uncentrifuged, ultrasonicated surfactant‐based SWNT solutions by simple and scalable magnetic separation. These particles also allowed for the systematic study on the effect of SWNT–polymer interaction time on the resulting SWNT “payloads.” Ultimately, high ‐purity m‐SWNT and s‐SWNT products are independently achieved by controlling the SWNT–polymer interaction time and relative concentrations, as well as SWNT sonication conditions. Furthermore, by controlling these factors, single‐chirality (6,5) s‐SWNT can be isolated with 92% purity directly from unpurified stocks. Thermogravimetric analysis indicates a total process SWNT yield of 1.2% and 1.7% for m‐SWNT and s‐SWNT, respectively. These results demonstrate the potential for a preparative method for separating carbon nanotubes based on electronic properties.  相似文献   

8.
A facile and efficient approach is developed for the fabrication of asymmetric non‐spherical polymer particle arrays. A specific amount of solvent is provided to interact with the spherical polymer particles to intensify the segmental mobility, thus suppressing the viscosity and the glass transition temperature of the polymer particles. The spherical polymer particles in the rubbery state are deformed into non‐spherical particle arrays at the gas/liquid interface. The upper parts of the polymer particles that protrude out of the liquid phase undergo deformation by interfacial tensions at the three‐phase contact line, allowing the formation of a ridge of polymer with a protrusion on the top surface. Simultaneously, the lower parts of the polymer particles submerged under the liquid phase are subjected to enormous surface tension at the contact points, leading to a non‐linear coalescence behavior of the neighboring polymer particles.  相似文献   

9.
Forming ordered 2D or 3D arrays of colloidal particles on the micro‐ or nanometer scale in a bottom‐up process is a challenging task. In previous works by various groups, hybridization between DNA strands localized on the particle surface is used to create crystalline arrays. However, this method requires an annealing process with a duration of one day or more and usually yields agglomerates of only a few dozen particles. In this work, a method for the rapid formation of highly‐ordered 2D agglomerates of superparamagnetic microparticles (beads) is presented. Dipolar coupling between the beads under the influence of a rotating magnetic field leads to the formation of a dense monolayer. The monolayer is then stabilized through DNA hybridization between DNA strands immobilized on the bead surface and a linker strand in solution. The whole self‐assembly process requires less than an hour and is therefore significantly faster than comparable methods.  相似文献   

10.
The heterogeneous assembly of colloidal polymer particles on the nano‐ and microstructures of a metal is a versatile platform for adjusting the mechanical and electrical properties simultaneously. The assemblies of silver (Ag) microrods and flower‐like zinc oxide (ZnO) microparticles with poly(methyl methacrylate) (PMMA) nanospheres are presented to prepare advanced composite materials. PMMA nanoparticles are prepared via the emulsion polymerization technique using a microfluidic preparation step in the presence of cationic surfactant. The surface charge of PMMA particles determines the binding interaction strength with inorganic constituents. Ag microrods and ZnO microparticles are prepared in a batch and in a continuous flow process, respectively. The assembling process can be explained by a particle–particle binding process due to the electrostatic interaction for both types of nanoassemblies. The observed binding pattern reveals certain lateral mobility of the small polymer particles at the surface of larger metal particle. The particle ratios in the nanoassemblies can be tuned over a wide range by changing the reaction parameters.  相似文献   

11.
Controlling spontaneous emission (SE) is of fundamental importance to a diverse range of photonic applications including but not limited to quantum optics, low power displays, solar energy harvesting and optical communications. Characterized by photonic bandgap (PBG) property, three‐dimensional (3D) photonic crystals (PCs) have emerged as a promising synthetic material, which can manipulate photons in much the same way as a semiconductor does to electrons. Emission tunable nanocrystal quantum dots (QDs) are ideal point sources to be embedded into 3D PCs towards active devices. The challenge however lies in the combination of QDs with 3D PCs without degradation of their emission properties. Polymer materials stand out for this purpose due to their flexibility of incorporating active materials. Combining the versatile multi‐photon 3D micro‐fabrication techniques, active 3D PCs have been fabricated in polymer‐QD composites with demonstrated control of SE from QDs. With this milestone novel miniaturized photonic devices can thus be envisaged.  相似文献   

12.
The development of polymer‐based nanoparticles to ferry siRNA continues to evolve. It is becoming increasingly apparent that gene silencing nanoparticles produced by conventional bulk manufacturing techniques often exhibit physicochemical heterogeneity within and between batches that can affect the biological performance. Here a new facile and robust “chip‐free” method is presented, termed chip‐free agitation‐generated droplets (CAD) preparation, using chitosan‐based gene silencing nanoparticles as an example. The CAD‐prepared silencing particles, in comparison to the particles prepared by the conventional bulk protocol, exhibit lower surface charge (9 mV vs 21 mV at N/P = 5), higher stability (≈40% higher binding affinity and up to 30% less morphological deformation), and are less prone to aggregation measured by nanoparticle tracking analysis over a period of one month. Furthermore, these physical attributes contribute up to 19% higher in cell viability at N/P = 5, while the gene silencing of enhanced green fluorescent protein remains constant in a human cell line. Control of particle properties is necessary to advance siRNA‐based delivery; the CAD preparation represents a physical complement to chemical design modifications, which can be readily transferred among research labs and utilized for alternative polymer systems.  相似文献   

13.
A method for the production of homogeneous layers of nanoparticles of arbitrary shape is presented. The method relies on a ligand exchange with a functionalized polymer and a subsequent self‐assembly of a thin film on the substrates. The interparticle distances in the layer can be adjusted by the length of the polymer. In the case of spherical particles, the approach yields quasi‐hexagonal structures; in the case of anisotropic particles, the minimum distance between adjacent particles is controlled. Regular arrangements of the nanoparticles covering areas of several square centimeters are achieved.  相似文献   

14.
The properties of materials largely reflect the degree and character of the localization of the molecules comprising them so that the study and characterization of particle localization has central significance in both fundamental science and material design. Soft materials are often comprised of deformable molecules and many of their unique properties derive from the distinct nature of particle localization. We study localization in a model material composed of soft particles, hard nanoparticles with grafted layers of polymers, where the molecular characteristics of the grafted layers allow us to “tune” the softness of their interactions. Soft particles are particular interesting because spatial localization can occur such that density fluctuations on large length scales are suppressed, while the material is disordered at intermediate length scales; such materials are called “disordered hyperuniform”. We use molecular dynamics simulation to study a liquid composed of polymer‐grafted nanoparticles (GNP), which exhibit a reversible self‐assembly into dynamic polymeric GNP structures below a temperature threshold, suggesting a liquid‐gel transition. We calculate a number of spatial and temporal correlations and we find a significant suppression of density fluctuations upon cooling at large length scales, making these materials promising for the practical fabrication of “hyperuniform” materials.  相似文献   

15.
A novel aqueous‐based self‐assembly approach to a composite of iron oxide nanorods on conductive‐polymer (CP)‐functionalized, ultralarge graphene oxide (GO) liquid crystals (LCs) is demonstrated here for the fabrication of a flexible hybrid material for charge capacitive application. Uniform decoration of α‐Fe2O3 nanorods on a poly(3,4‐ethylene‐dioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)‐functionalized, ultralarge GO scaffold results in a 3D interconnected layer‐by‐layer (LBL) architecture. This advanced interpenetrating network of ternary components is lightweight, foldable, and possesses highly conductive pathways for facile ion transportation and charge storage, making it promising for high‐performance energy‐storage applications. Having such structural merits and good synergistic effects, the flexible architecture exhibits a high specific discharge capacitance of 875 F g?1 and excellent volumetric specific capacitance of 868 F cm?3 at 5 mV s?1, as well as a promising energy density of 118 W h kg?1 (at 0.5 A g?1) and promising cyclability, with capacity retention of 100% after 5000 charge–discharge (CD) cycles. This synthesis method provides a simple, yet efficient approach for the solution‐processed LBL insertion of the hematite nanorods (HNR) into CP‐functionalized novel composite structure. It provides great promise for the fabrication of a variety of metal‐oxide (MO)‐nanomaterial‐based binder and current collector‐free flexible composite electrodes for high‐performance energy‐storage applications.  相似文献   

16.
Characterization of core–shell type nanoparticles in 3D by transmission electron microscopy (TEM) can be very challenging. Especially when both heavy and light elements coexist within the same nanostructure, artifacts in the 3D reconstruction are often present. A representative example would be a particle comprising an anisotropic metallic (Au) nanoparticle coated with a (mesoporous) silica shell. To obtain a reliable 3D characterization of such an object, a dose‐efficient strategy is proposed to simultaneously acquire high‐angle annular dark‐field scanning TEM and annular dark‐field tilt series for tomography. The 3D reconstruction is further improved by applying an advanced masking and interpolation approach to the acquired data. This new methodology enables us to obtain high‐quality reconstructions from which also quantitative information can be extracted. This approach is broadly applicable to investigate hybrid core–shell materials.  相似文献   

17.
Click chemistry is employed to couple two β‐cyclodextrins at both ends of azobenzene moiety yielding dumbbell‐shaped amphiphiles (AZO‐β‐CD dimer) constructed by rigid aromatic building blocks as “body”, and hydrophilic cyclodextrins as “head” with almost quantitative yield and purity. Bulk aggregates formed by the self‐assembly of the supraamphiphiles through π–π stacking and hydrophobic effect are observed. Meanwhile, the rationally designed polyesters, named as AZO‐PCL with controllable molecular weights and low polydispersities, are successfully synthesized by ring‐opening polymerization of ε‐caprolactone in the presence of p‐aminoazobenzene as initiator. In the aqueous phase, very stable spherical particles are formed by host–guest interactions between AZO‐β‐CD and AZO‐PCLs; the spherical aggregates inherit the photo‐responsiveness of azobenzene. The detailed aggregation and disaggregation behaviors are fully investigated by TEM, SEM, NMR, 2D NOESY, IR, UV and XRD measurements. Compared to the previous works, our newly developed system can be fabricated with more readily manners, avoiding tedious synthetic process; the reversible and dynamic nature of the non‐covalent interactions also can be modulated alternatively by UV or visible light. Thus, such dumbbell‐shaped supra‐amphiphiles are of great potential applications in the controlled delivery systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Recent research progress using X‐ray cryo‐crystallography with the photon beams from third‐generation synchrotron sources has resulted in recognition that this intense radiation commonly damages protein samples even when they are held at 100 K. Other structural biologists examining thin protein crystals or single particle specimens encounter similar radiation damage problems during electron diffraction and imaging, but have developed some effective countermeasures. The aim of this concise review is to examine whether analogous approaches can be utilized to alleviate the X‐ray radiation damage problem in synchrotron macromolecular crystallography. The critical discussion of this question is preceded by presentation of background material on modern technical procedures with electron beam instruments using 300–400 kV accelerating voltage, low‐dose exposures for data recording, and protection of protein specimens by cryogenic cooling; these practical approaches to dealing with electron radiation damage currently permit best resolution levels of 6 Å (0.6 nm) for single particle specimens, and of 1.9 Å for two‐dimensional membrane protein crystals. Final determination of the potential effectiveness and practical value of using such new or unconventional ideas will necessitate showing, by experimental testing, that these produce significantly improved protection of three‐dimensional protein crystals during synchrotron X‐ray diffraction.  相似文献   

19.
Lithium‐ion batteries (LIBs) have been extensively investigated due to the ever‐increasing demand for new electrode materials for electric vehicles (EVs) and clean energy storage. A wide variety of nano/microstructured LIBs electrode materials are hitherto created via self‐assembly, ranging from 0D nanospheres; 1D nanorods, nanowires, or nanobelts; and 2D nanofilms to 3D nanorod array films. Nanoparticles can be utilized to build up integrated architectures. Understanding of nanoparticles’ self‐assembly may provide information about their organization into large aggregates through low‐cost, high‐efficiency, and large‐scale synthesis. Here, the focus is on the recent advances in preparing hierarchically nano/microstructured electrode materials via self‐assembly. The hierarchical electrode materials are assembled from single component, binary to multicomponent building blocks via different driving forces including diverse chemical bonds and non‐covalent interactions. It is expected that nanoparticle engineering by high‐efficient self‐assembly process will impact the development of high‐performance electrode materials and high‐performance LIBs or other rechargeable batteries.  相似文献   

20.
Light scattering by non‐axisymmetric particles is commonly needed in particle characterization and other fields. After much work devoted to volume discretization methods to compute scattering by such particles, there is renewed interest in the T‐matrix method. We extended the null‐field method with discrete sources for T‐matrix computation and implemented the superellipsoid shape using an implicit equation. Additionally, a triangular surface patch model of a realistically shaped particle can be used for scattering computations. In this paper some exemplary results of scattering by non‐axisymmetric particles are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号