首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blending poly(butylene succinate) (PBS) with polylactide (PLLA) has proven effective in improving heat resistance of PLLA fibers. Unfortunately, it remains challenging to maintain good spinnability for PLLA/PBS blends with high content of PBS with which further improved heat resistance could be anticipated. In this study, reactive melt-extrusion was devised to in-situ generate PLLA-PBS copolymers by introducing zinc acetate as a transesterification catalyst into PLLA/PBS blends. The compatibility between the PLLA and PBS phases was greatly improved by the formation of PLLA-PBS copolymers, resulting in excellent melt-spinnability even for the PLLA/PBS blends with high PBS content up to 20 wt%. In addition, an increase in crystallinity of PLLA was achieved in PLLA/PBS blend fibers, thanks to the enhanced compatibility. More importantly, the presence of PBS nuclei retarded the molecular orientation of the amorphous PLLA phase, consistent with the effective results from the relaxation heat-setting treatment. These led to an exceptionally improved heat resistance of the PLLA/PBS blend fibers. As an encouraging result, the boiling water shrinkage was significantly reduced from ca. 20% for neat PLLA fibers to 3.7% for the PLLA/PBS blend fibers with 20 wt% PBS content. These findings may open up a facile and effective route to develop PLLA/PBS blend fibers showing sound spinnability, greatly improved heat resistance and softness.  相似文献   

2.
《先进技术聚合物》2018,29(2):785-794
A study on the influence of flame‐retardant types, poly(butylene succinate) (PBS) contents, and combination of flame retardant and PBS on the mechanical, thermal, morphological, and flame retardancy properties of polylactide (PLA) and PLA/PBS blends was investigated. Blending of PLA, PBS, and flame retardant was prepared by a twin screw extruder. Tricresyl phosphate (TCP) and montmorillonite (MMT) were used as a flame retardant, whereas PBS acted as a flexible material for enhancing the fire resistance and toughness of PLA, respectively. The results revealed that the introducing of TCP and MMT greatly improved the impact strength of the PLA. The impact toughness of PLA blends with 20 wt% of PBS increased to about 244% that of neat PLA. The addition of flame retardants markedly improved the limiting oxygen index of PLA from 18.0% to 30.1% and 24.3% for the blends containing TCP and MMT. The V‐0 rating in UL‐94 testing was achieved with PLA/TCP blend. Elongation at break, impact toughness, and thermal stability of PLA significantly increased with the increment of PBS concentration. The synergistic effect of flame retardant and PBS afforded the PLA blends with outstanding increase of impact resistance. Furthermore, the flame retardant of TCP in the system not only affected dripping behavior and total flame time of PLA/PBS blends but also improved limiting oxygen index values due to the forming of char layer and inhibiting of burning mechanism.  相似文献   

3.
The block copolymers of poly(butylene succinate) (PBS) and poly(butylene terephthalate) (PBT) were synthesized by melt processing for different times. The sequence distribution, thermal properties, and crystallization behavior were investigated over a wide range of compositions. For PBS/PBT block copolymers it was confirmed by statistical analysis from 1H-NMR data that the degree of randomness (B) was below 1. The melting peak (Tm) gradually moved to lower temperature with increasing melt processing time. It can be seen that the transesterification between PBS and PBT leads to a random copolymer. From the X-ray diffraction diagrams, only the crystal structure of PBS appeared in the M1 copolymer (PBS 80 wt %) and that of PBT appeared in the M3 (PBS 50 wt %) to M5 (PBS 20 wt %) copolymers. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 147–156, 1998  相似文献   

4.
本文研究了聚苯基膦酸二苯砜酯(PSPPP)对聚丁二酸丁二酯(PBS)的阻燃作用。研究发现,在PBS中仅添加4wt%的PSPPP,其垂直燃烧就可以达到UL-94 V-0级,极限氧指数达到34,PSPPP对PBS表现出高效阻燃作用。然而,PSPPP对PBS有促进降解的作用,破坏了PBS的力学性能。通过在PBS/PSPPP体系中添加0.5wt%氧化锌后,有效抑制了PBS的降解,力学性能得到改善。  相似文献   

5.
6.
In order to modify the properties of poly(butylene succinate), poly(diethylene glycol succinate) (PDGS) segment was incorporated by chain‐extension reaction of dihydroxyl‐terminated PBS and PDGS precursors using hexamethylene diisocyanate as a chain extender to form PBS‐b‐PDGS multiblock copolymers. The chemical structure and basic physical properties of the multiblock copolyesters were characterized by nuclear magnetic resonance spectroscopy, differential scanning calorimeter (DSC), wide angle X‐ray diffraction, and tensile testing. The results suggested that the incorporation of PDGS segments would increase the elongation at break of PBS significantly while decrease its melting temperature and crystallization temperature slightly. The isothermal crystallization kinetics studied by DSC and polarized optical microscopy indicated that the crystallization rate of the multiblock polymers decreased gradually with increasing PDGS segment content while the crystallization mechanism kept unchanged and the spherulitic growth rate of the multiblock copolymers decreased gradually with increase in PDGS content due to its diluent effect to the crystallization of PBS segments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The effects of the lamellar growth direction, extinction rings, and spherulitic boundaries of poly(butylene succinate) (PBSU) on the spherulitic growth of poly(ethylene oxide) (PEO) were investigated in miscible blends of the two crystalline polymers. In the crystallization process from a homogeneous melt, PBSU first developed volume‐filling spherulites, and then PEO spherulites nucleated and grew inside the PBSU spherulites. The lamellar growth direction of PEO was identical with that of PBSU even when the PBSU content was about 5 wt %. PEO, which intrinsically does not exhibit banded spherulites, showed apparent extinction rings inside the banded spherulites of PBSU. The growth rate of a PEO spherulite, GPEO, was influenced not only by the blend composition and the crystallization temperature of PEO, but also by the growth direction with respect to PBSU lamellae, the boundaries of PBSU spherulites, and the crystallization temperature of PBSU, TPBSU. The value of GPEO first increased with decreasing TPBSU when a PEO spherulite grew inside a single PBSU spherulite. Then, GPEO decreased when TPBSU was further decreased and a PEO spherulite grew through many tiny PBSU spherulites. This behavior was discussed based on the aforementioned factors affecting GPEO. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 539–547, 2009  相似文献   

8.
Phenyl side chains were introduced to poly(butylene succinate) and poly(ethylene adipate) by the polymerization of the respective monomers in the presence of mandelic acid. The increasing content of the phenyl side chains decreased the melting temperature and the crystallinity but increased the glass‐transition temperature of the aliphatic polyesters. The phenyl side branches reduced the crystallinity of poly(butylene succinate) more significantly than the ethyl or n‐octyl side branches did. The tensile strength, elongation, and tear strength of poly(ethylene adipate) decreased with an increase in the content of mandelic acid units. However, the increasing content of mandelic acid units enhanced the elongation and tear strength of poly(butylene succinate) considerably without a notable deterioration of tensile strength. The biodegradability of the copolyesters was increased as a result of the introduction of more mandelic acid units due to the decrease in the crystallinity. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1504–1511, 2000  相似文献   

9.
We evaluated the relationship between the ionic substituents and nonisothermal crystallization behavior in poly(butylene succinate) (PBS) ionomers, synthesized by the introduction of sulfonated dimethyl fumarate (SDMF) with sodium sulfonate. In addition, we investigated the effect of sodium ions on the molecular structure of the PBS backbone by solid‐state 23Na NMR analysis. Sodium ion aggregates (multiplets) was predominately created with the ionic group concentration, and melt rheology and dynamic melt analysis results showed that multiplet formation induced not only remarkable heterogeneity, but also a high degree of clustering in the PBS chains. At low ionic group concentration, well dispersed multiplets behaved as effective nuclei during the crystallization of the PBS ionomer and accelerated the rate of crystallization. As ionic group concentration grew higher, crystallization rates decreased due to hindered chain mobility by clusters consisting of numerous multiplets. A combined Ozawa and Avrami equation proved to be more effective than the Ozawa equation in describing the nonisothermal crystallization kinetics of PBS and its ionomers. The observed nucleation activity indicates that the nonisothermal crystallization rate is not directly proportional to the ionic group concentration. Superior nucleation activity was observed in PBS ionomer containing 1 mol % SDMF. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 925–937, 2008  相似文献   

10.
This article investigated the melting behaviors, crystallization kinetics, and spherulitic morphologies of poly(butylene succinate) (PBS) and its copolyester (PBSR) modified with rosin maleopimaric acid anhydride, using wide‐angle X‐ray diffraction, differential scanning calorimeter (DSC), and polarized optical microscope. Subsequent DSC scans of isothermally crystallized PBS and PBSR exhibited two melting endotherms, respectively, which was due to the melt‐recrystallization process occurring during the DSC scans. The equilibrium melting point of PBSR (125.9 °C) was lower than that of PBS (139 °C). The commonly used Avrami equation was used to describe the isothermal crystallization kinetics. For nonisothermal crystallization studies, the model combining Avrami equation and Ozawa equation was employed. The result showed a consistent trend in the crystallization process. The crystallization rate was decreased, the perfection of crystals was decreased, the recrystallization was reduced, and the spherulitic morphologies were changed when the huge hydrogenated phenanthrene ring was added into the chain of PBS. The activation energy (ΔE) for the isothermal crystallization process determined by Arrhenius method was 255.9 kJ/mol for PBS and 345.7 kJ/mol for PBSR. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 900–913, 2006  相似文献   

11.
The multiple melting behavior of poly(butylene succinate) (PBSu) was studied with differential scanning calorimetry (DSC). Three different PBSu resins, with molecular weights (MWs) of 1.1 × 105, 1.8 × 105, and 2.5 × 105, were isothermally crystallized at various crystallization temperatures (Tc) ranging from 70 to 97.5 °C. The Tc dependence of crystallization half‐time (τ) was obtained. DSC melting curves for the isothermally crystallized samples were obtained at a heating rate of 10 K min−1. Three endothermic peaks, an annealing peak, a low‐temperature peak L, and a high‐temperature peak H, and an exothermic peak located between peaks L and H clearly appeared in the DSC curve. In addition, an endothermic small peak S appeared at a lower temperature of peak H. Peak L increased with increasing Tc, whereas peak H decreased. The Tc dependence of the peak melting temperatures [Tm(L) and Tm(H)], recrystallization temperature (Tre), and heat of fusion (ΔH) was obtained. Their fitting curves were obtained as functions of Tc. Tm(L), Tre, and ΔH increased almost linearly with Tc, whereas Tm(H) was almost constant. The maximum rate of recrystallization occurred immediately after the melting. The mechanism of the multiple melting behavior is explained by the melt‐recrystallization model. The high MW samples showed similar Tc dependence of τ, and τ for the lowest MW sample was longer than that for the others. Peak L increased with MW, whereas peak H decreased. In spite of the difference of MW, Tm(L), Tm(H), and Tre almost coincided with each other at the same Tc. The ΔH values, that is crystallinity, for the highest MW sample were smaller than those for the other samples at the same Tc. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2039–2047, 2005  相似文献   

12.
Propylene-co-ethylene elastomer resin (PER) has been blended into biodegradable poly(butylene succinate) copolymer (PBS) by a melt-blending process to develop a novel semi-biodegradable thermoplastic elastomer. The PBS/PER blends displayed good compatibility in the range 70/30 > PBS/PER > 30/70 according to analyses by DSC, DMA and the Couchman method. Although the PBS/PER blends displayed compatibility, SEM analyses of most of the PBS/PER blends revealed two-phase structures including sea-island and irregular fiber-shaped morphologies, except for PBS/PER (70/30). PBS/PER (60/40) and PBS/PER (50/50) display low tensile strength due to large sea-phase and irregular fiber-shaped morphologies, even though they have good compatibility. PBS/PER (70/30) apparently exhibited a single phase by SEM and showed the best compatibility by DSC and DMA. Furthermore, the tan δ, elongation and initial moduli of the PBS/PER blends were seen to increase with increasing PER content, indicating that the toughness and shock resistance of PBS are improved by incorporating PER into the composition.  相似文献   

13.
热塑性淀粉/PBS共混物的微生物降解性研究   总被引:2,自引:0,他引:2  
以甘油作为增塑剂,采用玉米淀粉与改性后的聚丁二酸丁二醇酯(PBS)熔融共混制备出淀粉/PBS共混材料.对这种改善了两相相容性的共混材料在特定微生物条件下的降解行为进行了研究.结果显示,共混物降解28天后,含有30%PBS的共混物质量损失达到35%左右,其力学性能只有降解前的20%,甘油含量减小和PBS含量增加均能减缓材料的降解.且随着降解时间的延长,PBS的结晶度和熔点有所提高.  相似文献   

14.
Two aliphatic polyesters that consisted from succinic acid, ethylene glycol and butylene glycol, —poly(ethylene succinate) (PESu) and poly(butylene succinate) (PBSu)—, were prepared by melt polycondensation process in a glass batch reactor. These polyesters were characterized by DSC, 1H NMR and molecular weight distribution. Their number average molecular weight is almost identical in both polyesters, close to 7000 g/mol, as well as their carboxyl end groups (80 eq/106 g). From TG and Differential TG (DTG) thermograms it was found that the decomposition step appears at a temperature 399 °C for PBSu and 413 °C for PESu. This is an indication that PESu is more stable than PBSu and that chemical structure plays an important role in the thermal decomposition process. In both polyesters degradation takes place in two stages, the first that corresponds to a very small mass loss, and the second at elevated temperatures being the main degradation stage. The two stages are attributed to different decomposition mechanisms as is verified from the values of activation energy determined with iso-conversional methods of Ozawa, Flyn, Wall and Friedman. The first mechanism that takes place at low temperatures, is auto-catalysis with activation energy E = 128 and E = 182 kJ/mol and reaction order n = 0.75 and 1.84 for PBSu and PESu, respectively. The second mechanism is nth-order reaction with E = 189 and 256 kJ/mol and reaction order n = 0.68 and 0.96 for PBSu and PESu, respectively, as they were calculated from the fitting of experimental results.  相似文献   

15.
16.
Fully biodegradable poly(butylene succinate) (PBS) and poly(butylene carbonate) (PBC) blends were prepared by melt blending. Miscibility, thermal properties, crystallization behavior and mechanical properties of PBS/PBC blends were investigated by scanning electron microscopy (SEM), phase contrast optical microscopy (PCOM), differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and mechanical properties tests. The SEM and PCOM results indicated that PBS was immiscible with PBC. The WAXD results showed that the crystal structures of both PBS and PBC were not changed by blending and the two components crystallized separately in the blends. The isothermal crystallization data showed that the crystallization rate of PBS increased with the increase of PBC content in the blends. The impact strength of PBS was improved significantly by blending with PBC. When the PBC content was 40%, the impact strength of PBS was increased by nearly 9 times.  相似文献   

17.
18.
Poly(butylene succinate) (PBSu), poly(butylene succinate-co-adipate) (PBSA) and poly(butylene terephthalate-co-adipate) (PBTA) microcapsules were prepared by the double emulsion/solvent evaporation method. The effect of polymer and poly(vinyl alcohol) (PVA) concentration on the microcapsule morphologies, drug encapsulation efficiency (EE) and drug loading (DL) of bovine serum albumin (BSA) and all-trans retinoic acid (atRA) were all investigated. As a result, the sizes of PBSu, PBSA and PBTA microcapsules were increased significantly by varying polymer concentrations from 6 to 9%. atRA was encapsulated into the microcapsules with an high level of approximately 95% EE. The highest EE and DL of BSA were observed at 1% polymer concentration in values of 60 and 37%, respectively. 4% PVA was found as the optimum concentration and resulted in 75% EE and 14% DL of BSA. The BSA release from the capsules of PBSA was the longest, with 10% release in the first day and a steady release of 17% until the end of day 28. The release of atRA from PBSu microcapsules showed a zero-order profile for 2 weeks, keeping a steady release rate during 4 weeks with a 9% cumulative release. Similarly, the PBSA microcapsules showed a prolonged and a steady release of atRA during 6 weeks with 12% release. In the case of PBTA microcapsules, after a burst release of 10% in the first day, showed a parabolic release profile of atRA during 42 days, releasing 36% of atRA.  相似文献   

19.
The crystallization behavior of biodegradable poly(butylene succinate) and copolyesters poly(butylene succinate‐co‐propylene succinate)s (PBSPS) was investigated by using 1H NMR, DSC and POM, respectively. Isothermal crystallization kinetics of the polyesters has been analyzed by the Avrami equation. The 2.2‐2.8 range of Avrami exponential n indicated that the crystallization mechanism was a heterogeneous nucleation with spherical growth geometry in the crystallization process of polyesters. Multiple melting peaks were observed during heating process after isothermal crystallization, and it could be explained by the melting and recrystallization model. PBSPS was identified to have the same crystal structure with that of PBS by using wide‐angle X‐ray diffraction (WAXD), suggesting that only BS unit crystallized while the PS unit was in an amorphous state. The crystal structure of polyesters was not affected by the crystallization temperatures, too. Besides the normal extinction crosses under the POM, the double‐banded extinction patterns with periodic distance along the radial direction were also observed in the spherulites of PBS and PBSPS. The morphology of spherulites strongly depended on the crystallization temperature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 420–428, 2007  相似文献   

20.
κ־�� 《高分子科学》2013,31(1):187-200
Biodegradable poly(butylene succinate) (PBS) and layered double hydroxide (LDH) nanocomposites were prepared via melt blending in a twin-screw extruder. The morphology and dispersion of LDH nanoparticles within PBS matrix were characterized by transmission electron microscopy (TEM), which showed that LDH nanoparticles were found to be well distributed at the nanometer level. The nonisothermal crystallization behavior of nanocomposites was extensively studied using differential scanning calorimetry (DSC) technique at various cooling rates. The crystallization rate of PBS was accelerated by the addition of LDH due to its heterogeneous nucleation effect; however, the crystallization mechanism and crystal structure of PBS remained almost unchanged. In kinetics analysis of nonisothermal crystallization, the Ozawa approach failed to describe the crystallization behavior of PBS/LDH nanocomposites, whereas both the modified Avrami model and the Mo method well represented the crystallization behavior of nanocomposites. The effective activation energy was estimated as a function of the relative degree of crystallinity using the isoconversional analysis. The subsequent melting behavior of PBS and PBS/LDH nanocomposites was observed to be dependent on the cooling rate. The POM showed that the small and less perfect crystals were formed in nanocomposites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号