首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 15 毫秒
1.
This study gives an original methodology to synthetize novel metallo‐drugs nanoparticles relevant for medicinal chemistry. Gold (HAuCl4) are complexes with antitumor compounds (paclitaxel (PTX); docetaxel (DTX)) and dicarboxylic acid‐terminated polyethylene‐glycol (PEG) that plays a role of surfactants. The proposed synthesis is fast and leads to hybrid‐metal nanoparticles (AuNPs) in which drug solubility is improved. The interactions between drugs (DTX, PTX), PEG diacid (PEG), and Au (III) ions to form hybrid nanocarriers called DTX IN PEG‐AuNPs and PTX IN PEG‐AuNPs, are characterized by various analytical techniques (Raman and UV–vis spectroscopies) and transmission electron microscopy. The efficient drugs release under pH conditions is also achieved and characterized showing an amazing reversible equilibrium between Au (III)‐complex‐drug and Au0NPs. For therapeutic purposes, such AuNPs are then decorated with the anti‐EGFR polyclonal antibodies, which specifically recognizes the hERG1 channel aberrantly expressed on the membrane of human lung cancer cells. This paper, through an original chemical approach, will occupy an important position in the field of nanomedicine, and hope that novel perspectives will be proposed for the development of high drug‐loading nanomedicines.  相似文献   

2.
The calculated and experimental Raman spectra of the (EMI+)TFSI ionic liquid, where EMI+ is the 1‐ethyl‐3‐methylimidazolium cation and TFSI the bis(trifluoromethanesulfonyl)imide anion, have been investigated for a better understanding of the EMI+ and TFSI conformational isomerism as a function of temperature. Characteristic Raman lines of the planar (p) and non‐planar (np) EMI+ conformers are identified using the reference (EMI+)Br salt. The anion conformer of C2 symmetry is confirmed to be more stable than the cis (C1) one by 4.5 ± 0.2 kJ mol−1. At room temperature, the population of trans (C2) anions and np cations is 75 ± 2% and 87 ± 4%, respectively. Fast cooling quenches a metastable glassy phase composed of mainly C2 anion conformers and p cation conformers, whereas slow cooling gives a crystalline phase composed of C1 anion conformers and of np cation conformers. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
The Raman and Infrared (IR) spectra of poly(methyl methacrylate) (PMMA) membranes plasticized by ionic liquids of the (1 − x)[1‐butyl‐3‐methylimidazolium bis(trifluoromethanesulfonyl)imide (BMITFSI)],xLiTFSI type, where BMI+ is the 1‐butyl‐3‐methylimidazolium cation and TFSI the bis(trifluoromethanesulfonyl)imide anion, are analyzed for a lithium bis(trifluoromethane sulfone)imide (LiTFSI) mole fraction x = 0.23 and PMMA contents from 0 to 50 wt%. The lithium is found to have an average coordination of about three CO groups and less than one TFSI anion. It plays the role of a cross‐linker between the ester groups of PMMA and the nonvolatile ionic liquid. Addition of PMMA to the (1 − x)(BMITFSI),xLiTFSI ionic liquid lowers the conductivity but might improve the lithium transference number by transforming the [Li(TFSI)2] anionic clusters present in the pure ionic liquid into a mixed coordination by ester groups and TFSI anions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Raman spectroscopy has been used to study vanadates in the solid state. The molecular structure of the vanadate minerals vésigniéite [BaCu3(VO4)2(OH)2] and volborthite [Cu3V2O7(OH)2·2H2O] have been studied by Raman spectroscopy and infrared spectroscopy. The spectra are related to the structure of the two minerals. The Raman spectrum of vésigniéite is characterized by two intense bands at 821 and 856 cm−1 assigned to ν1 (VO4)3− symmetric stretching modes. A series of infrared bands at 755, 787 and 899 cm−1 are assigned to the ν3 (VO4)3− antisymmetric stretching vibrational mode. Raman bands at 307 and 332 cm−1 and at 466 and 511 cm−1 are assigned to the ν2 and ν4 (VO4)3− bending modes. The Raman spectrum of volborthite is characterized by the strong band at 888 cm−1, assigned to the ν1 (VO3) symmetric stretching vibrations. Raman bands at 858 and 749 cm−1 are assigned to the ν3 (VO3) antisymmetric stretching vibrations; those at 814 cm−1 to the ν3 (VOV) antisymmetric vibrations; that at 508 cm−1 to the ν1 (VOV) symmetric stretching vibration and those at 442 and 476 cm−1 and 347 and 308 cm−1 to the ν4 (VO3) and ν2 (VO3) bending vibrations, respectively. The spectra of vésigniéite and volborthite are similar, especially in the region of skeletal vibrations, even though their crystal structures differ. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号