共查询到20条相似文献,搜索用时 15 毫秒
1.
An algebraic multigrid method for Q2−Q1 mixed discretizations of the Navier–Stokes equations 下载免费PDF全文
Algebraic multigrid (AMG) preconditioners are considered for discretized systems of partial differential equations (PDEs) where unknowns associated with different physical quantities are not necessarily colocated at mesh points. Specifically, we investigate a Q 2? Q 1 mixed finite element discretization of the incompressible Navier–Stokes equations where the number of velocity nodes is much greater than the number of pressure nodes. Consequently, some velocity degrees of freedom (DOFs) are defined at spatial locations where there are no corresponding pressure DOFs. Thus, AMG approaches leveraging this colocated structure are not applicable. This paper instead proposes an automatic AMG coarsening that mimics certain pressure/velocity DOF relationships of the Q 2? Q 1 discretization. The main idea is to first automatically define coarse pressures in a somewhat standard AMG fashion and then to carefully (but automatically) choose coarse velocity unknowns so that the spatial location relationship between pressure and velocity DOFs resembles that on the finest grid. To define coefficients within the intergrid transfers, an energy minimization AMG (EMIN‐AMG) is utilized. EMIN‐AMG is not tied to specific coarsening schemes and grid transfer sparsity patterns, and so it is applicable to the proposed coarsening. Numerical results highlighting solver performance are given on Stokes and incompressible Navier–Stokes problems. 相似文献
2.
In this work we study an asymptotic behaviour of solutions to the Laplace–Beltrami operator on a rotation surface near a cuspidal point. To this end we use the WKB-approximation. This approach describes the asymptotic behaviour of the solution more explicitly than abstract theory for operators with operator-valued coefficients. 相似文献
3.
4.
F. J. Gaspar J. L. Gracia F. J. Lisbona C. W. Oosterlee 《Numerical Linear Algebra with Applications》2008,15(8):661-683
In this paper, we present efficient multigrid methods for systems of partial differential equations that are governed by a dominating grad–div operator. In particular, we show that distributive smoothing methods give multigrid convergence factors that are independent of problem parameters and of the mesh sizes in space and time. The applications range from model problems to secondary consolidation Biot's model. We focus on the smoothing issue and mainly solve academic problems on Cartesian‐staggered grids. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
5.
6.
We present a scheme for solving two‐dimensional, nonlinear reaction‐diffusion equations, using a mixed finite‐element method. To linearize the mixed‐method equations, we use a two grid scheme that relegates all the Newton‐like iterations to a grid ΔH much coarser than the original one Δh, with no loss in order of accuracy so long as the mesh sizes obey . The use of a multigrid‐based solver for the indefinite linear systems that arise at each coarse‐grid iteration, as well as for the similar system that arises on the fine grid, allows for even greater efficiency. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 317–332, 1999 相似文献
7.
Andrii Khrabustovskyi 《Mathematical Methods in the Applied Sciences》2009,32(16):2123-2137
We study the asymptotic behavior of the eigenvalues and the eigenfunctions of the Laplace–Beltrami operator on a Riemannian manifold Mε depending on a small parameter ε>0 and whose structure becomes complicated as ε→0. Under a few assumptions on scales of Mε we obtain the homogenized eigenvalue problem. In addition we study the behavior of the heat equation on Mε and investigate the large time behavior of the homogenized equation. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
8.
Mixed two‐grid finite difference methods for solving one‐dimensional and two‐dimensional Fitzhugh–Nagumo equations 下载免费PDF全文
The aim of this paper is to propose mixed two‐grid finite difference methods to obtain the numerical solution of the one‐dimensional and two‐dimensional Fitzhugh–Nagumo equations. The finite difference equations at all interior grid points form a large‐sparse linear system, which needs to be solved efficiently. The solution cost of this sparse linear system usually dominates the total cost of solving the discretized partial differential equation. The proposed method is based on applying a family of finite difference methods for discretizing the spatial and time derivatives. The obtained system has been solved by two‐grid method, where the two‐grid method is used for solving the large‐sparse linear systems. Also, in the proposed method, the spectral radius with local Fourier analysis is calculated for different values of h and Δt. The numerical examples show the efficiency of this algorithm for solving the one‐dimensional and two‐dimensional Fitzhugh–Nagumo equations. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
9.
The so-called bidomain system is possibly the most complete model for the cardiac bioelectric activity. It consists of a reaction–diffusion system, modeling the intra, extracellular and transmembrane potentials, coupled through a nonlinear reaction term with a stiff system of ordinary differential equations describing the ionic currents through the cellular membrane. In this paper we address the problem of efficiently solving the large linear system arising in the finite element discretization of the bidomain model, when a semiimplicit method in time is employed. We analyze the use of structured algebraic multigrid preconditioners on two major formulations of the model, and report on our numerical experience under different discretization parameters and various discontinuity properties of the conductivity tensors. Our numerical results show that the less exercised formulation provides the best overall performance on a typical simulation of the myocardium excitation process. 相似文献
10.
We apply the least‐squares finite element method with adaptive grid to nonlinear time‐dependent PDEs with shocks. The least‐squares finite element method is also used in applying the deformation method to generate the adaptive moving grids. The effectiveness of this method is demonstrated by solving a Burgers' equation with shocks. Computational results on uniform grids and adaptive grids are compared for the purpose of evaluation. The results show that the adaptive grids can capture the shock more sharply with significantly less computational time. For moving shock, the adaptive grid moves correctly with the shock. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006 相似文献
11.
We study the spectrum of the Laplace–Beltrami operator on noncompact Riemannian manifolds of a special form, in particular on model manifolds. We obtain a discreteness criterion for the spectrum in terms of the volume and capacity of some domains on a manifold. 相似文献
12.
We develop 2‐grid schemes for solving nonlinear reaction‐diffusion systems: where p = (p, q) is an unknown vector‐valued function. The schemes use discretizations based on a mixed finite‐element method. The 2‐grid approach yields iterative procedures for solving the nonlinear discrete equations. The idea is to relegate all the Newton‐like iterations to grids much coarser than the final one, with no loss in order of accuracy. The iterative algorithms examined here extend a method developed earlier for single reaction‐diffusion equations. An application to prepattern formation in mathematical biology illustrates the method's effectiveness. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 589–604, 1999 相似文献
13.
In this paper, we employ local Fourier analysis (LFA) to analyze the convergence properties of multigrid methods for higher‐order finite‐element approximations to the Laplacian problem. We find that the classical LFA smoothing factor, where the coarse‐grid correction is assumed to be an ideal operator that annihilates the low‐frequency error components and leaves the high‐frequency components unchanged, fails to accurately predict the observed multigrid performance and, consequently, cannot be a reliable analysis tool to give good performance estimates of the two‐grid convergence factor. While two‐grid LFA still offers a reliable prediction, it leads to more complex symbols that are cumbersome to use to optimize parameters of the relaxation scheme, as is often needed for complex problems. For the purposes of this analytical optimization as well as to have simple predictive analysis, we propose a modification that is “between” two‐grid LFA and smoothing analysis, which yields reasonable predictions to help choose correct damping parameters for relaxation. This exploration may help us better understand multigrid performance for higher‐order finite element discretizations, including for Q2‐Q1 (Taylor‐Hood) elements for the Stokes equations. Finally, we present two‐grid and multigrid experiments, where the corrected parameter choice is shown to yield significant improvements in the resulting two‐grid and multigrid convergence factors. 相似文献
14.
Liuqiang Zhong Shi Shu Junxian Wang J. Xu 《Numerical Linear Algebra with Applications》2013,20(1):93-111
In this paper, we develop several two‐grid methods for the Nédélec edge finite element approximation of the time‐harmonic Maxwell equations. We first present a two‐grid method that uses a coarse space to solve the original problem and then use a fine space to solve a corresponding symmetric positive definite problem. Then, we present two types of iterative two‐grid methods, one is to add the kernel of the curl ‐operator in the fine space to a coarse mesh space to solve the original problem and the other is to use an inner iterative method for dealing with the kernel of the curl ‐operator in the fine space and the coarse space, separately. We provide the error estimates for the first two methods and present numerical experiments to show the efficiency of our methods.Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
15.
We consider a multigrid algorithm (MG) for the cell centered finite difference scheme (CCFD) on general triangular meshes using a new prolongation operator. This prolongation is designed to solve the diffusion equation with strongly discontinuous coefficient as well as with smooth one. We compare our new prolongation with the natural injection and the weighted operator in Kwak, Kwon, and Lee ( 8 ) and the behaviors of these three prolongation are discussed. Numerical experiments show that (i) for smooth problems, the multigrid with our new prolongation is fastest, the next is the weighted prolongation, and the third is the natural injection; and (ii) for nonsmooth problems, our new prolongation is again fastest, the next is the natural injection, and the third is the weighted prolongation. In conclusion, our new prolongation works better than the natural injection and the weighted operator for both smooth and nonsmooth problems. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006 相似文献
16.
《Numerical Methods for Partial Differential Equations》2018,34(2):686-704
A two‐grid stabilized mixed finite element method based on pressure projection stabilization is proposed for the two‐dimensional Darcy‐Forchheimer model. We use the derivative of a smooth function, , to approximate the derivative of in constructing the two‐grid algorithm. The two‐grid method consists of solving a small nonlinear system on the coarse mesh and then solving a linear system on the fine mesh. There are a substantial reduction in computational cost. We prove the existence and uniqueness of solution of the discrete schemes on the coarse grid and the fine grid and obtain error estimates for the two‐grid algorithm. Finally, some numerical experiments are carried out to verify the accuracy and efficiency of the method. 相似文献
17.
We consider the application of a variable V‐cycle multigrid algorithm for the hybridized mixed method for second‐order elliptic boundary‐value problems. Our algorithm differs from the previous works on multigrid for the mixed method in that it is targeted at efficiently solving the matrix system for the Lagrange multiplier of the method. Since the mixed method is best implemented by first solving for the Lagrange multiplier and recovering the remaining unknowns locally, our algorithm is more useful in practice. The critical ingredient in the algorithm is a suitable intergrid transfer operator. We design such an operator and prove mesh‐independent convergence of the variable V‐cycle algorithm. Numerical experiments indicating the asymptotically optimal performance of our algorithm, as well as the failure of certain seemingly plausible intergrid transfer operators, are presented. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
18.
A multigrid compact finite difference method for solving the one‐dimensional nonlinear sine‐Gordon equation 下载免费PDF全文
The aim of this paper is to propose a multigrid method to obtain the numerical solution of the one‐dimensional nonlinear sine‐Gordon equation. The finite difference equations at all interior grid points form a large sparse linear system, which needs to be solved efficiently. The solution cost of this sparse linear system usually dominates the total cost of solving the discretized partial differential equation. The proposed method is based on applying a compact finite difference scheme of fourth‐order for discretizing the spatial derivative and the standard second‐order central finite difference method for the time derivative. The proposed method uses the Richardson extrapolation method in time variable. The obtained system has been solved by V‐cycle multigrid (VMG) method, where the VMG method is used for solving the large sparse linear systems. The numerical examples show the efficiency of this algorithm for solving the one‐dimensional sine‐Gordon equation. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
19.
Chuanjun Chen Wei Liu Chunjia Bi 《Numerical Methods for Partial Differential Equations》2013,29(5):1543-1562
A two‐grid finite volume element method, combined with the modified method of characteristics, is presented and analyzed for semilinear time‐dependent advection‐dominated diffusion equations in two space dimensions. The solution of a nonlinear system on the fine‐grid space (with grid size h) is reduced to the solution of two small (one linear and one nonlinear) systems on the coarse‐grid space (with grid size H) and a linear system on the fine‐grid space. An optimal error estimate in H1 ‐norm is obtained for the two‐grid method. It shows that the two‐grid method achieves asymptotically optimal approximation, as long as the mesh sizes satisfy h = O(H2). Numerical example is presented to validate the usefulness and efficiency of the method. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013 相似文献
20.
Jie Zhao 《Numerical Methods for Partial Differential Equations》2005,21(3):451-471
Multigrid V‐ and F‐cycle algorithms for the biharmonic problem using the H‐C‐T element are studied in the article. We show that the contraction numbers can be uniformly improved by increasing the number of smoothing steps. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005 相似文献