首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the search for potential ferroelectric materials, molecular‐based one‐, two‐ and three‐dimensional cadmium(II) organic–inorganic compounds have been of interest as they often display solid–solid phase transitions induced by a variation in temperature. A new cadmium dicyanamide complex, poly[4‐dimethylamino‐1‐ethylpyridin‐1‐ium [tri‐μ‐dicyanamido‐κ6N1:N5‐cadmium(II)]], {(C9H15N2)[Cd(C2N3)3]}n, was synthesized by the reaction of 4‐dimethylamino‐1‐ethylpyridin‐1‐ium bromide, cadmium nitrate tetrahydrate and sodium dicyanamide in aqueous solution. In the crystal structure, each CdII cation is octahedrally coordinated by six terminal N atoms from six anionic dicyanamide (dca) ligands. Neighbouring CdII cations are linked together by dicyanamide bridges to form a two‐dimensional coordination polymer. The organic cations are not involved in the formation of the supramolecular network.  相似文献   

2.
A novel three‐dimensional coordination polymer, namely, poly[[diaquabis(μ‐4,4′‐bipyridine)bis{μ3‐5‐[(2‐carboxyphenoxy)methyl]isophthalato}tricadmium(III)] dimethylformamide monosolvate 2.5‐hydrate], {[Cd3(C16H9O7)2(C10H8N2)2(H2O)2]·2C3H7NO·5H2O}n, was obtained by the reaction of ether‐linked 5‐[(2‐carboxyphenoxy)methyl]isophthalic acid (H3L) with CdII salts in the presence of 4,4′‐bipyridine (bpy) under solvothermal conditions. In this complex, the CdII centres are connected by the carboxylate ligands to form two‐dimensional wave‐like layers, which are pillared by bpy ligands and extended into a rare three‐dimensional (3,6)‐connected sqc27 framework. The complex demonstrated good water stability and strong luminescence emissions. It not only possesses excellent luminescence sensing activities toward Fe3+ and Cr2O72? in aqueous solution, but can also distinguish between Cr2O72? and CrO42? by luminescence. Furthermore, it could be simply and quickly regenerated at least five times. A study of the sensing mechanism indicated that luminescence quenching may be related to the energy competition between the complex and sensing analytes.  相似文献   

3.
The Fe3+ ion is the most important element in environmental systems and plays a fundamental role in biological processes. Iron deficiency can result in diseases and highly selective and sensitive detection of trace Fe3+ has become a hot topic. A novel two‐dimensional ZnII coordination framework, poly[[μ‐4,4′‐bis(2‐methylimidazol‐1‐yl)diphenyl ether‐κ2N3:N3′](μ‐4,4′‐sulfonyldibenzoato‐κ2O:O′)zinc(II)], [Zn(C14H8O6S)(C20H18N4O)]n or [Zn(SDBA)(BMIOPE)]n, (I), where H2SDBA is 4,4′‐sulfonyldibenzoic acid and BMIOPE is 4,4′‐bis(2‐methylimidazol‐1‐yl)diphenyl ether, has been prepared and characterized by IR, elemental analysis, thermal analysis and X‐ray diffraction analysis, the latter showing that the coordination polymer exhibits a threefold interpenetrating two‐dimensional 44‐ sql network. In addition, it displays a highly selective and sensitive sensing for Fe3+ ions in aqueous solution.  相似文献   

4.
Reaction of cadmium nitrate with diphenylphosphinic acid in dimethylformamide solvent yielded the one‐dimensional coordination polymer catena‐poly[[bis(dimethylformamide‐κO)cadmium(II)]‐bis(μ‐diphenylphosphinato‐κ2O:O′)], [Cd(C12H10O2P)2(C3H7NO)2]n, (I). Addition of 4,4′‐bipyridine to the synthesis afforded a two‐dimensional extended structure, poly[[(μ‐4,4′‐bipyridine‐κ2N:N′)bis(μ‐diphenylphosphinato‐κ2O:O′)cadmium(II)] dimethylformamide monosolvate], {[Cd(C12H10O2P)2(C10H8N2)]·C3H7NO}n, (II). In (II), the 4,4′‐bipyridine molecules link the CdII centers in the crystallographic a direction, while the phosphinate ligands link the CdII centers in the crystallographic b direction to complete a two‐dimensional sheet structure. Consideration of additional π–π interactions of the phenyl rings in (II) produces a three‐dimensional structure with channels that encapsulate dimethylformamide molecules as solvent of crystallization. Both compounds were characterized by single‐crystal X‐ray diffraction and FT–IR analysis.  相似文献   

5.
A novel twofold interpenetrating two‐dimensional (2D) ZnII coordination framework, poly[[(μ‐1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene‐κ2N3:N3)(μ‐naphthalene‐2,6‐dicarboxylato‐κ2O2:O6)zinc(II)] dimethylformamide monosolvate], {[Zn(C12H6O4)(C14H14N4)]·C3H7NO}n or {[Zn(1,3‐BMIB)(NDC)]·DMF}n (I), where H2NDC is naphthalene‐2,6‐dicarboxylic acid, 1,3‐BMIB is 1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene and DMF is dimethylformamide, was prepared and characterized through IR spectroscopy, elemental analysis, thermal analysis and single‐crystal X‐ray diffraction. Single‐crystal X‐ray diffraction analysis revealed that (I) exhibits an unusual twofold interpenetrating 2D network. In addition, it displays strong fluorescence emissions and a high photocatalytic activity for the degradation of Rhodamine B (RhB) under UV‐light irradiation.  相似文献   

6.
From the viewpoint of crystal engineering, the construction of crystalline polymeric materials requires a rational choice of organic bridging ligands for the self‐assembly process. Multicarboxylate ligands are of particular interest due to their strong coordination activity towards metal ions, as well as their various coordination modes and versatile conformations. The structural chemistry of dicarboxylate‐based coordination polymers of transition metals has been developed through the grafting of N‐containing organic linkers into carboxylate‐bridged transition metal networks. A new luminescent two‐dimensional zinc(II) coordination polymer containing bridging 2,2‐dimethylsuccinate and 4,4′‐bipyridine ligands, namely poly[[aqua(μ2‐4,4′‐bipyridine‐κ2N:N′)bis(μ3‐2,2‐dimethylbutanedioato)‐κ4O1,O1′:O4:O4′5O1:O1,O4:O4,O4′‐dizinc(II)] dihydrate], {[Zn2(C6H8O4)2(C10H8N2)(H2O)]·2H2O}n, has been synthesized under hydrothermal conditions and characterized by single‐crystal X‐ray diffraction and elemental, IR and thermogravimetric analyses. In the structure, the 2,2‐dimethylsuccinate ligands link linear tetranuclear ZnII subunits into one‐dimensional chains along the c axis. 4,4′‐Bipyridine acts as a tethering ligand expanding these one‐dimensional chains into a two‐dimensional layered structure. Hydrogen‐bonding interactions between the water molecules (both coordinated and free) and carboxylate O atoms strengthen the packing of the layers. Furthermore, the luminescence properties of the complex were investigated. The compound exhibits a blue photoluminescence in the solid state at room temperature and may be a good candidate for potential hybrid inorganic–organic photoactive materials.  相似文献   

7.
In the construction of coordination polymers, many factors can influence the formation of the final architectures, such as the nature of the metal centres, the organic ligands and the counter‐anions. In the coordination polymer poly[aqua(μ‐benzene‐1,2‐dicarboxylato‐κ4O 1,O 1′:O 2,O 2′)[μ‐2‐(1H‐imidazol‐1‐ylmethyl)‐6‐methyl‐1H‐benzimidazole‐κ2N 2:N 3]cadmium(II)], [Cd(C12H12N4)(C8H4O4)(H2O)]n or [Cd(immb)(1,2‐bdic)(H2O)]n , each CdII ion is seven‐coordinated by two N atoms from two symmetry‐related 2‐(1H‐imidazol‐1‐ylmethyl)‐6‐methyl‐1H‐benzimidazole (immb) ligands, by four O atoms from two symmetry‐related benzene‐1,2‐dicarboxylate (1,2‐bdic2−) ligands and by one water molecule, leading to a CdN2O5 distorted pentagonal bipyramidal coordination environment. The immb and 1,2‐bdic2− ligands bridge CdII ions and form a two‐dimensional network structure. O—H…O and N—H…O hydrogen bonds stabilize the structure. In addition, the IR spectroscopic properties, PXRD patterns, thermogravimetric behaviour and fluorescence properties of the title polymer have been investigated.  相似文献   

8.
Aminobenzoic acid derivatives are widely used in the preparation of new coordination polymers since they contain O‐atom donors, as well as N‐atom donors, and have a rich variety of coordination modes which can lead to polymers with intriguing structures and interesting properties. Two new coordination polymers incorporating 1‐aminobenzene‐3,4,5‐tricarboxylic acid (H3abtc), namely, poly[(μ3‐1‐amino‐5‐carboxybenzene‐3,4‐dicarboxylato)diaquacadmium(II)], [Cd(C9H5NO6)(H2O)2]n, (I), and poly[[bis(μ5‐1‐aminobenzene‐3,4,5‐tricarboxylato)triaquatrizinc(II)] dihydrate], {[Zn3(C9H4NO6)2(H2O)3]·2H2O}n, (II), have been prepared and structurally characterized by single‐crystal X‐ray diffraction. In polymer (I), each tridentate 1‐amino‐5‐carboxybenzene‐3,4‐dicarboxylate (Habtc2?) ligand coordinates to three CdII ions to form a two‐dimensional network structure, in which all of the CdII ions and Habtc2? ligands are equivalent, respectively. Polymer (II) also exhibits a two‐dimensional network structure, in which three crystallographically independent ZnII ions are bridged by two crystallographically independent pentadentate 1‐aminobenzene‐3,4,5‐tricarboxylate (abtc3?) ligands. This indicates that changing the metal ion can influence the coordination mode of the H3abtc‐derived ligand and further influence the detailed architecture of the polymer. Moreover, the IR spectra, thermogravimetric analyses and fluorescence properties were investigated.  相似文献   

9.
Excellent fluorescence properties are exhibited by d10 metal compounds. The novel three‐dimensional ZnII coordination framework, poly[[{μ2‐bis[4‐(2‐methyl‐1H‐imidazol‐1‐yl)phenyl] ether‐κ2N3:N3′}(μ2‐furan‐2,5‐dicarboxylato‐κ2O2:O5)zinc(II)] 1.76‐hydrate], {[Zn(C6H2O5)(C20H18N4O)]·1.76H2O}n, has been prepared and characterized using IR spectroscopy, elemental analysis and single‐crystal X‐ray diffraction. The crystal structure analysis revealed that the compound exhibits a novel fourfold interpenetrating diamond‐like network. This polymer also displays a strong fluorescence emission in the solid state at room temperature.  相似文献   

10.
A two‐dimensional MnII coordination polymer (CP), poly[bis[μ2‐2,6‐bis(imidazol‐1‐yl)pyridine‐κ2N3:N3′]bis(thiocyanato‐κN)manganese] [Mn(NCS)2(C11H9N5)2]n, (I), has been obtained by the self‐assembly reaction of Mn(ClO4)2·6H2O, NH4SCN and bent 2,6‐bis(imidazol‐1‐yl)pyridine (2,6‐bip). CP (I) was characterized by FT–IR spectroscopy, elemental analysis and single‐crystal X‐ray diffraction. The crystal structure features a unique two‐dimensional (4,4) network with one‐dimensional channels. The luminescence and nitrobenzene‐sensing properties were explored in a DMF suspension, revealing that CP (I) shows a strong luminescence emission and is highly sensitive for nitrobenzene detection.  相似文献   

11.
A new cyanide‐bridged FeIII–MnII heterobimetallic coordination polymer (CP), namely catena‐poly[[[N,N′‐(1,2‐phenylene)bis(pyridine‐2‐carboxamidato)‐κ4N,N′,N′′,N′′′]iron(III)]‐μ‐cyanido‐κ2C:N‐[bis(4,4′‐bipyridine‐κN)bis(methanol‐κO)manganese(II)]‐μ‐cyanido‐κ2N:C], {[FeMn(C18H12N4O2)(CN)2(C10H8N2)2(CH3OH)2]ClO4}n, ( 1 ), was prepared by the self‐assembly of the trans‐dicyanidoiron(III)‐containing building block [Fe(bpb)(CN)2]? [bpb2? = N,N′‐(1,2‐phenylene)bis(pyridine‐2‐carboxamidate)], [Mn(ClO4)2]·6H2O and 4,4′‐bipyridine, and was structurally characterized by elemental analysis, IR spectroscopy, single‐crystal X‐ray crystallography and powder X‐ray diffraction (PXRD). Single‐crystal X‐ray diffraction analysis shows that CP 1 possesses a cationic linear chain structure consisting of alternating cyanide‐bridged Fe–Mn units, with free perchlorate as the charge‐balancing anion, which can be further extended into a two‐dimensional supramolecular sheet structure via inter‐chain π–π interactions between the 4,4′‐bipyridine ligands. Within the chain, each MnII ion is six‐coordinated by an N6 unit and is involved in a slightly distorted octahedral coordination geometry. Investigation of the magnetic properties of 1 reveals an antiferromagnetic coupling between the cyanide‐bridged FeIII and MnII ions. A best fit of the magnetic susceptibility based on the one‐dimensional alternating chain model leads to the magnetic coupling constants J1 = ?1.35 and J2 = ?1.05 cm?1, and the antiferromagnetic coupling was further confirmed by spin Hamiltonian‐based density functional theoretical (DFT) calculations.  相似文献   

12.
Naphthalene diimides, which are planar, chemically robust and redox‐active, are an attractive class of electron‐deficient dyes, which can undergo a single reversible one‐electron reduction to form stable radical anions in the presence of electron donors upon irradiation. This makes them excellent candidates for organic linkers in the construction of photochromic coordination polymers. Such a photochromic one‐dimensional linear coordination polymer has been prepared using N ,N ′‐bis(3‐carboxyphenyl)naphthalene‐1,8:4,5‐tetracarboximide (H2BBNDI). Crystallization of H2BBNDI with magnesium nitrate in an N ,N ′‐dimethylformamide (DMF)/ethanol/H2O mixed‐solvent system under solvothermal conditions afforded the one‐dimensional coordination polymer catena‐poly[[bis(dimethylformamide‐κO )magnesium(II)]‐bis[μ‐N‐(3‐carboxylatophenyl)‐N ′‐(3‐carboxylphenyl)naphthalene‐1,8:4,5‐tetracarboximide‐κ2O :O ′]], [Mg(C28H13N2O8)2(C3H7NO)2]n . The asymmetric unit contains half of a magnesium cation, one HBBNDI ligand and one DMF molecule. Two partially deprotonated HBBNDI ligands bridge two magnesium cations to form a one‐dimensional chain. Strong inter‐chain π–π interactions between the naphthalene rings of the HBBNDI ligand and the imide rings of adjacent chains provide a two‐dimensional structure. The supramolecular three‐dimensional framework is stabilized by π–π interactions between naphthalene rings of neighbouring two‐dimensional supramolecular networks. The complex exhibits a reversible photochromic behaviour, which may originate from the photoinduced electron‐transfer generation of radicals in the HBBNDI ligand.  相似文献   

13.
A cadmium–thiocyanate complex, poly[[bis(nicotinic acid‐κN)di‐μ‐thiocyanato‐κ2N:S2S:N‐cadmium(II)] monohydrate], {[Cd(NCS)2(C6H5NO2)2]·H2O}n, was synthesized by the reaction of nicotinic acid, cadmium nitrate tetrahydrate and potassium thiocyanide in aqueous solution. In the crystal structure, each CdII cation is in a distorted octahedral coordination environment, coordinated by the N and S atoms of nicotinic acid and thiocyanate ligands. Neighbouring CdII cations are linked together by thiocyanate bridges to form a two‐dimensional network. Hydrogen‐bond interactions between the uncoordinated solvent water molecules and the organic ligands result in the formation of the three‐dimensional supramolecular network.  相似文献   

14.
The interaction between the uranyl cation, (UO2)2+, and organic species is of interest due to the potential applications of the resulting compounds with regard to nuclear waste disposal and nuclear fuel reprocessing. The hydrothermal reaction of various uranyl compounds with flexible zwitterionic 1,1′‐[1,4‐phenylenebis(methylene)]bis(pyridin‐1‐ium‐4‐carboxylate) dihydrochloride (Bpmb·2HCl) in deionized water containing drops of H2SO4 resulted in the formation of a novel two‐dimensional uranyl coordination polymer, namely poly[tetraoxido{μ2‐1,1′‐[1,4‐phenylenebis(methylene)]bis(pyridin‐1‐ium‐4‐carboxylate)}di‐μ3‐sulfato‐diuranium(VI)], [(UO2)2(SO4)2(C20H16N2O4)]n, (1). Single‐crystal X‐ray diffraction reveals that this coordination polymer exhibits a layered arrangement and the (UO2)2+ centre is coordinated by five equatorial O atoms. The structure was further characterized by FT–IR spectroscopy, powder X‐ray diffraction (PXRD) and thermogravimetric analysis (TGA). The polymer shows high thermal stability up to 696 K. Furthermore, the photoluminescence properties of (1) has also been studied, showing it to exhibit a typical uranyl fluorescence.  相似文献   

15.
Bifunctional organic ligands are very popular for the design of coordination polymers because they allow the formation of a great diversity of structures. In the title coordination polymer, the new bifunctional inversion‐symmetric ligand 2,5‐bis(1H‐1,2,4‐triazol‐1‐yl)terephthalic acid (abbreviated as H2bttpa) links CdII cations, giving rise to the three‐dimensional CdII coordination polymer catena‐poly[diaqua[μ4‐2,5‐bis(1H‐1,2,4‐triazol‐1‐yl)terephthalato‐κ4O1:O4:N4:N4′]cadmium(II)], [Cd(C12H6N6O4)(H2O)2]n or [Cd(bttpa)(H2O)2]n. The asymmetric unit consists of half a CdII cation, half a bttpa2− ligand and one coordinated water molecule. The CdII cation is located on a twofold axis and is hexacoordinated in a distorted octahedral environment of four O and two N atoms. Four different bttpa2− ligands contribute to this coordination, with two carboxylate O atoms in trans positions and two triazole N atoms in cis positions. Two aqua ligands in cis positions complete the coordination sphere. The fully deprotonated bttpa2− ligand sits about a crystallographic centre of inversion and links two CdII cations to form a chain in a μ2‐terephthalato‐κ2O1:O4 bridge. This chain extends in the other two directions via the triazole heterocycles, producing a three‐dimensional framework. O—H…O hydrogen bonds and weak C—H…N interactions stabilize the three‐dimensional crystal structure. The FT–IR spectrum, X‐ray powder pattern, thermogravimetric behaviour and solid‐state photoluminescence of the title polymer have been investigated. The photoluminescence is enhanced and red‐shifted with respect to the uncoordinated ligand.  相似文献   

16.
In poly[[μ3‐2,2′‐(disulfanediyl)dibenzoato‐κ5O:O,O′:O′′,O′′′](1,10‐phenanthroline‐κ2N,N′)cadmium(II)], [Cd(C14H8O4S2)(C12H8N2)]n, the asymmetric unit contains one CdII cation, one 2,2′‐(disulfanediyl)dibenzoate anion (denoted dtdb2−) and one 1,10‐phenanthroline ligand (denoted phen). Each CdII centre is seven‐coordinated by five O atoms of bridging/chelating carboxylate groups from three dtdb2− ligands and by two N atoms from one phen ligand, forming a distorted pentagonal–bipyramidal geometry. The CdII cations are bridged by dtdb2− anions to give a two‐dimensional (4,4) layer. The layers are stacked to generate a three‐dimensional supramolecular architecture via a combination of aromatic C—H...π and π–π interactions. The thermogravimetric and luminescence properties of this compound were also investigated.  相似文献   

17.
A new coordination polymer (CP), namely poly[(μ‐4,4′‐bipyridine)(μ3‐3,4′‐oxydibenzoato)cobalt(II)], [Co(C14H8O5)(C10H8N2)]n or [Co(3,4′‐obb)(4,4′‐bipy)]n ( 1 ), was prepared by the self‐assembly of Co(NO3)2·6H2O with the rarely used 3,4′‐oxydibenzoic acid (3,4′‐obbH2) ligand and 4,4′‐bipyridine (4,4′‐bipy) under solvothermal conditions, and has been structurally characterized by elemental analysis, IR spectroscopy, single‐crystal X‐ray crystallography and powder X‐ray diffraction (PXRD). Single‐crystal X‐ray diffraction reveals that each CoII ion is six‐coordinated by four O atoms from three 3,4′‐obb2? ligands, of which two function as monodentate ligands and the other as a bidentate ligand, and by two N atoms from bridging 4,4′‐bipy ligands, thereby forming a distorted octahedral CoN2O4 coordination geometry. Adjacent crystallographically equivalent CoII ions are bridged by the O atoms of 3,4′‐obb2? ligands, affording an eight‐membered Co2O4C2 ring which is further extended into a two‐dimensional [Co(3,4′‐obb)]n sheet along the ab plane via 3,4′‐obb2? functioning as a bidentate bridging ligand. The planes are interlinked into a three‐dimensional [Co(3,4′‐obb)(4,4′‐bipy)]n network by 4,4′‐bipy ligands acting as pillars along the c axis. Magnetic investigations on CP 1 disclose an antiferromagnetic coupling within the dimeric Co2 unit and a metamagnetic behaviour at low temperature resulting from intermolecular π–π interactions between the parallel 4,4′‐bipy ligands.  相似文献   

18.
A new cadmium–thiocyanate complex, namely catena‐poly[1‐carboxymethyl‐4‐(dimethylamino)pyridinium [cadmium(II)‐tri‐μ‐thiocyanato‐κ4N:S2S:N] [[[4‐(dimethylamino)pyridinium‐1‐acetate‐κ2O,O′]cadmium(II)]‐di‐μ‐thiocyanato‐κ2N:S2S:N]], {(C9H13N2O2)[Cd(NCS)3][Cd(NCS)2(C9H12N2O2)]}n, was synthesized by the reaction of 4‐(dimethylamino)pyridinium‐1‐acetate, cadmium nitrate tetrahydrate and potassium thiocyanide in aqueous solution. In the crystal structure, two types of CdII atoms are observed in distorted octahedral coordination environments. One type of CdII atom is coordinated by two O atoms from the carboxylate group of the 4‐(dimethylamino)pyridinium‐1‐acetate ligand and by two N atoms and two S atoms from four different thiocyanate ligands, while the second type of CdII atom is coordinated by three N atoms and three S atoms from six different thiocyanate ligands. Neighbouring CdII atoms are linked by thiocyanate bridges to form a one‐dimensional zigzag chain and a one‐dimensional coordination polymer. Hydrogen‐bond interactions are involved in the formation of the supramolecular network.  相似文献   

19.
To investigate the effect of different imidazole-containing ligands on the structure of coordination polymers, two new Zn(II) coordination polymers based on 1,4-cyclohexanedicarboxylic acid (H2cda) and two different imidazole-containing ligands, [Zn(cda)(bib)0.5]n (1) and [Zn(cda)(bmib)0.5]n (2) (bib = 1,4-bis(imidazol-1-yl)benzene and bmib = 1,4-bis(2-methylimidazol-3-ium-yl)benzene), have been synthesized and characterized by single-crystal X-ray diffraction. Complex 1 shows a 3-D structure with point symbol (4.82.103).(4.82). Complex 2 displays a 2-D layer structure with an –AB– stacking sequence.  相似文献   

20.
The title compound, poly[(μ2‐formato‐κ3O,O′:O)[μ2‐4‐(pyridin‐4‐yl)benzoato‐κ3N:O,O′]zinc(II)], [Zn(C12H8NO2)(HCOO)]n, has been synthesized in situ and characterized by thermogravimetric analysis (TGA) and single‐crystal and powder X‐ray diffraction analyses. The polymer contains two independent structural units in the asymmetric unit. These are constructed from Zn2+ ions, 4‐(pyridin‐4‐yl)benzoate (4‐pbc) bridges and in‐situ‐generated formate ligands, forming two similar two‐dimensional (2D) layer structures. These similar 2D layers are arranged alternately and are linked with each other by dense C—H…O hydrogen bonds to generate a three‐dimensional (3D) supramolecular framework. The crystal is pseudomerohedrally twinned about [201]. Compared with free 4‐Hpbc, the polymer exhibits a red shift and significantly enhanced solid‐state luminescence properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号