首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the specific liver parenchymal cell delivery, a series of short heterobifunctional poly(ethylene glycol) (PEG) derivatives containing dimercapto and galactose (Gal) terminals is synthesized for the preparation of gold conjugates. The Gal density on the surface of all gold conjugates can be well controlled and the prepared gold conjugates are stable in various media, even in the presence of serum. For the liver targeting and reflectance imaging applications, the structure–function relationships of this platform, including the influence of the PEG molecular weight and the Gal ligand coverage of hybrid particles on the cytotoxicity and cellular recognition of tumor cells in vitro and on their liver‐targeting ability in small animals, are studied. Biocompatibility results show that HepG2 cells are more sensitive than HeLa cells to gold conjugates. Cellular uptake studies demonstrate that a lower PEG molecular weight, a higher Gal density, or a higher gold concentration can increase the cellular uptake efficiency of these hybrid particles in HepG2 cells when the other parameters are constant. The results reveal the importance of parameter modulation for the design and control of nanoprobes and the gold conjugates with short PEG chains and a high Gal density are a potential vector for active‐targeting therapy.  相似文献   

2.
Conjugates formed by antibody adsorption to gold nanoparticles (AuNP) have found extensive utilization in immunoassays due to the high surface area and interesting optical and electronic properties of the nanomaterials. Nevertheless, the mechanism of formation of antibody‐AuNP conjugates and their antigen binding characteristics have not been sufficiently explored in terms of specificity and consequent clinical applicability. Dynamic light scattering and related techniques have been successfully employed to detect antigen binding to antibody‐AuNP complexes. Here, a range of different techniques from the bionanotechnology realm have been applied to obtain a detailed picture of a competitive immunoassay for malaria antigen detection, based on fluorescence‐quenching by AuNPs. Both agarose gel electrophoresis and differential centrifugal sedimentation (DCS) analyses provide binding constants in the same order of magnitude, for antibody binding to AuNP and for antigen binding to antibody‐AuNP conjugates. Both techniques are also able to reveal inhibition of antigen binding in the presence of a major blood plasma protein, transferrin (via competitive binding). DCS is further used to show inhibition of the binding of the antigen in the presence of human plasma, a realistic testing condition, of high relevance to the implementation of immunoassays at the clinical level.  相似文献   

3.
Au nanoparticle (AuNP) core particles coated with a poly(N‐isopropylacrylamide) (pNIPAm) shell (Au@pNIPAm) are synthesized by seed mediated free radical polymerization. Subsequently, a temperature–light‐responsive photonic device is fabricated by sandwiching the Au@pNIPAm particles between two thin layers of Au. The optical device exhibits visual color and characteristic multipeak reflectance spectra, where peak position is primarily determined by the distance between two Au layers. Dual responsivities of the photonic device are achieved by combining the photothermal effect of AuNPs core (localized surface plasmon resonance (LSPR) effect) and the temperature responsivity of the pNIPAm shell. That is, the pNIPAm shell collapses as the temperature is increased above pNIPAm's lower critical solution temperature, either by direct heat input or heat generated by AuNPs' LSPR effect. To investigate the effect of AuNPs distribution in the microgels on the devices' photothermal responsivity, the Au@pNIPAm microgel‐based etalon devices are compared with that fabricated by AuNP‐doped pNIPAm‐based microgels; in terms of response kinetics and optical spectrum homogeneity. The uniform Au@pNIPAm microgel‐based devices show a fast response and exhibit a comparatively homogeneous spectrum over the whole slide. These materials can potentially find use in drug delivery systems, active optics, and soft robotics.  相似文献   

4.
Spherical NaYF4 upconversion nanocrystals with mean radii of about 5 and 11 nm are observed to form colloidal crystals, i.e., 3D assemblies of the particles with long‐range order. The colloidal crystals of the larger particles form directly in solution when dispersions of the particles in toluene are stored at room temperature for several weeks. Crystallization of the smaller particles takes place when their dispersions in hexane are slowly dried at elevated temperatures. The formation and the structure of the colloidal crystals are studied by small‐angle X‐ray scattering (SAXS). SAXS measurements show that the smaller as well as the larger particles assemble into a face‐centered cubic lattice with unit cell dimensions of a = 18.7 nm and a = 35.5 nm, respectively. The SAXS data also show that the particles in the colloidal crystals still bear a layer of oleic acid on their surfaces. The thickness of this layer is 1.5–1.8 nm, as determined by comparing the unit cell dimensions of the colloidal crystals with the mean particle sizes. The latter could be very precisely determined from the distinct oscillations observed in the SAXS data of dilute colloidal dispersions of the nanocrystals.  相似文献   

5.
Immobilisation of rabbit immunoglobulin G (rIgG) was performed by affinity binding to protein A (PrA) covalently bound to three different thiolate self-assembled monolayers (SAMs), (i) a mixed SAM of mercaptoundecanoic acid (MUA) and mercaptohexanol (C6OH) at a molar ratio of 1-3, (ii) a pure SAM of MUA and (iii) a pure SAM of cystamine (CA). A comparative study of anti-rIgG recognition process on these three surfaces was achieved in order to assess the influence of the attachment layer topography and composition upon the sensor quality. Functionalised gold-coated surfaces were characterised by three complementary analytical techniques, namely atomic force microscopy (AFM), polarization modulation-reflection-adsorption infrared spectroscopy (PM-RAIRS) and quartz crystal microbalance (QCM). PM-RAIRS and AFM revealed that the three SAMs were formed on the gold surfaces. AFM observations made it clear that the thiolate and PrA layers were rather homogeneous in the case of pure MUA and CA SAMs, as compared to the MUA/C6OH mixed SAM on which PrA aggregates were observed. Though the highest amount of antibody was bound to the PrA on CA layer, higher anti-rIgG over IgG ratios were measured on the less dense layers of antibody.  相似文献   

6.
A set of three types of silver nanoparticles (Ag NPs) are prepared, which have the same Ag cores, but different surface chemistry. Ag cores are stabilized with mercaptoundecanoic acid (MUA) or with a polymer shell [poly(isobutylene‐alt‐maleic anhydride) (PMA)]. In order to reduce cellular uptake, the polymer‐coated Ag NPs are additionally modified with polyethylene glycol (PEG). Corrosion (oxidation) of the NPs is quantified and their colloidal stability is investigated. MUA‐coated NPs have a much lower colloidal stability than PMA‐coated NPs and are largely agglomerated. All Ag NPs corrode faster in an acidic environment and thus more Ag(I) ions are released inside endosomal/lysosomal compartments. PMA coating does not reduce leaching of Ag(I) ions compared with MUA coating. PEGylation reduces NP cellular uptake and also the toxicity. PMA‐coated NPs have reduced toxicity compared with MUA‐coated NPs. All studied Ag NPs were less toxic than free Ag(I) ions. All in all, the cytotoxicity of Ag NPs is correlated on their uptake by cells and agglomeration behavior.  相似文献   

7.
Raman spectra of microcrystalline silicon layers have been recorded in‐situ during growth. The spectra have been collected under realistic conditions for solar cell deposition. To enable these measurements an electrode with an optical feed through has been developed. By using a metallic grid to shield the feed through it is possible to achieve homogeneous deposition of µc‐Si:H at a sufficient optical transmission. In‐situ Raman measurements were carried out during the deposition of a layer with an intentionally introduced gradient in crystallinity that was seen in‐situ as well in reference measurements performed on the same layer ex‐situ. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The mechanism causing mixing and segregation of multi‐component fluidized systems consisting of both density and size variant particle mixtures is presented. The validity of the model is demonstrated with the experimental results of three‐component (ternary) liquid fluidized systems. Ternary bed fluidized systems separated into different mixed layers and a pure layer of excess component. Location of the stratified mixed layers and pure layer can be predicted from the mixture bulk density evaluation. The volume fractions of solids and fluid corresponding to each mixed layer can be theoretically predicted from the force balance applied to the particles in that layer knowing the systems physical properties.  相似文献   

9.
We report in situ Joule heating on suspended single‐layer graphene in a transmission electron microscope (TEM). Thermally‐driven degradation of pre‐deposited nanoparticles on the membrane is monitored and used for local temperature estimation. By extrapolating the Joule heating power and temperature relation, we find that the suspended single‐layer graphene has exceptional thermal stability up to at least 2600 K. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Surface material functionalization including layer‐by‐layer (LbL) polyelectrolyte films with incorporated nanoparticles is a growing field with a wide range of biomedical applications: drug reservoirs, medical devices, or tissue engineering. In parallel, gold nanoparticles (AuNPs) can be grafted by drugs and sensitive molecules using simple protocols. This study shows that AuNP behavior is modified when they are entrapped into three partner LbL films in comparison to the colloidal solution. A polycationic (polyallylamine hydrochloride (PAH)) and a polyanionic (polyacrylic acid (PAA)) polymer is used to build films based on three cycles ((PAH/AuNP/PAA)3). To investigate the interaction with biomolecules and cells, three different films are developed changing the outer layer (either PAH or AuNP or PAA) with the same number of AuNP deposit. The best biocompatibility is observed with a polyacrylic acid outer layer. Due to the high capacity of drug grafting on gold nanoparticles, the results seem promising for the development of nanostructured biomedical devices.  相似文献   

11.
A simple ethanol sol‐based method for the synthesis of gold nanosheets (AuNSs) and gold nanoparticle‐over‐nanosheet (AuNP/NS) is developed. Gold nanoparticles (AuNPs) with average sizes of ≈8 nm are grown in situ on the surface of the AuNS, which forms a NP/NS structure that obtains strong, significantly improved, surface‐enhanced Raman spectroscopy activity with the magnitude ≈2 and ≈6 orders higher than the simplex AuNP and AuNS, respectively. This performance is mainly attributed to uniform AuNPs that are closely packed over AuNS and coupled with NP–NS and NP–NP interactions. The NP–NS–GP (the gap between NP–NS) is narrower than NP–NP–GP in which much stronger and steadier plasmon resonance is obtained that can significantly enhance the Raman signal. The results show that single‐crystalline AuNS is an ideal substrate, which can be further coated with other metallic NPs to form a new flexible, high‐activity and AuNS‐based nanocomposite for a wide variety of applications.  相似文献   

12.
Solution small‐angle X‐ray scattering (SAXS) measurements were obtained using a 128 × 128 pixel X‐ray mixed‐mode pixel array detector (MMPAD) with an 860 µs readout time. The MMPAD offers advantages for SAXS experiments: a pixel full‐well of >2 × 107 10 keV X‐rays, a maximum flux rate of 108 X‐rays pixel?1 s?1, and a sub‐pixel point‐spread function. Data from the MMPAD were quantitatively compared with data from a charge‐coupled device (CCD) fiber‐optically coupled to a phosphor screen. MMPAD solution SAXS data from lysozyme solutions were of equal or better quality than data captured by the CCD. The read‐noise (normalized by pixel area) of the MMPAD was less than that of the CCD by an average factor of 3.0. Short sample‐to‐detector distances were required owing to the small MMPAD area (19.2 mm × 19.2 mm), and were revealed to be advantageous with respect to detector read‐noise. As predicted by the Shannon sampling theory and confirmed by the acquisition of lysozyme solution SAXS curves, the MMPAD at short distances is capable of sufficiently sampling a solution SAXS curve for protein shape analysis. The readout speed of the MMPAD was demonstrated by continuously monitoring lysozyme sample evolution as radiation damage accumulated. These experiments prove that a small suitably configured MMPAD is appropriate for time‐resolved solution scattering measurements.  相似文献   

13.
The design of effective cancer vaccines must be able to activate dendritic cells (DCs) of the innate immune system in order to induce immunity to pathogens and cancer. DCs patrol the body and once they encounter antigens, they orchestrate a complex mechanism of events and signals that can alert the adaptive immune system to action. However, DC‐based vaccines remain a challenge in part because the source and quality of antigens, the DC targeting molecule, type of adjuvant, and delivery vehicle must be optimized to induce a robust immune response. Gold nanoparticles (AuNPs) have now entered clinical trials as carriers due to their ease of functionalization with antigens, adjuvants, and targeting molecules. This progress report discusses how AuNPs can influence DC activation and maturation, as well as their potential impact on T helper (Th) differentiation. Ultimately, successful AuNP‐based DC vaccines are able to induce phagocytosis, activation/maturation, migration, T cell costimulation, and cytokine secretion, which is named AuNP‐induced DC tuning (AuNP‐DC tuning). Although at its infancy, understanding the processes of AuNP‐DC tuning will give a better understanding of how best to engineer AuNPs and will redefine the next generation of DC‐based vaccines.  相似文献   

14.
Although nanoparticles (NPs) can be carefully engineered to have maximal stability and functionality desirable for use in diverse applications, they are generally not suitable for long‐term storage in solution. It is also difficult to store NPs in a dry state because dried NPs generally become aggregated and cannot easily be redispersed. Thus, a new strategy allowing long‐term storage of NPs with high stability, redispersibility, and functionality is highly demanded. By passivating the 13 nm gold nanoparticle (AuNP) surface with stabilizing agents and treating a paper substrate with both bovine serum albumin and sucrose after coating with a hydrophobic polyvinyl butyral layer, it is possible to fully redisperse (≈100%) dried AuNPs with colloidal stability comparable to that of as‐prepared AuNPs. Furthermore, AuNPs physically stabilized with polyvinylpyrrolidone can react with thiol‐containing compounds, such as 1,4‐dithiothreitol (DTT). Taking advantage of the oxidation reaction of hypochlorous acid with DTT, it is possible to demonstrate a paper‐based colorimetric sensor for detection of residual chlorine in water. Since this strategy is applicable to large‐sized AuNPs (30–90 nm), silver NPs, oleic acid‐capped magnetic NPs, and cetrimonium bromide‐passivated gold nanorods, it can be used for diverse NPs requiring long‐term storage for many applications.  相似文献   

15.
The use of nanoparticle (NP) systems to control cellular physiology, including membrane potential, can facilitate furthered understanding of many disparate cellular processes ranging from cellular proliferation to tissue regeneration. A gold NP (AuNP) bioconjugate system based on the honeybee venom peptide, tertiapin‐Q (AuNP‐TPN‐Q), that depolarizes membrane potential by targeting inward rectifier potassium channels (Kir), is developed. The conjugate elicits, in a peptide concentration–dependent manner, a greater and more rapid depolarization response compared to the free peptide alone. The specificity of the interaction of the AuNP‐TPN‐Q conjugate with the Kir channel using immunocytochemistry and competition binding assays is confirmed. It is further shown that membrane depolarization is photothermally reversible via the laser‐induced plasmonic heating of the AuNP, providing a level of control over Kir channels not afforded by currently available drugs. The functional nanobioconjugate described herein provides a new research tool for understanding the intricacies of ion channel activity and the modulation of cellular membrane potential.  相似文献   

16.
At the National Synchrotron Radiation Research Center (NSRRC), which operates a 1.5 GeV storage ring, a dedicated small‐angle X‐ray scattering (SAXS) beamline has been installed with an in‐achromat superconducting wiggler insertion device of peak magnetic field 3.1 T. The vertical beam divergence from the X‐ray source is reduced significantly by a collimating mirror. Subsequently the beam is selectively monochromated by a double Si(111) crystal monochromator with high energy resolution (ΔE/E? 2 × 10?4) in the energy range 5–23 keV, or by a double Mo/B4C multilayer monochromator for 10–30 times higher flux (~1011 photons s?1) in the 6–15 keV range. These two monochromators are incorporated into one rotating cradle for fast exchange. The monochromated beam is focused by a toroidal mirror with 1:1 focusing for a small beam divergence and a beam size of ~0.9 mm × 0.3 mm (horizontal × vertical) at the focus point located 26.5 m from the radiation source. A plane mirror installed after the toroidal mirror is selectively used to deflect the beam downwards for grazing‐incidence SAXS (GISAXS) from liquid surfaces. Two online beam‐position monitors separated by 8 m provide an efficient feedback control for an overall beam‐position stability in the 10 µm range. The beam features measured, including the flux density, energy resolution, size and divergence, are consistent with those calculated using the ray‐tracing program SHADOW. With the deflectable beam of relatively high energy resolution and high flux, the new beamline meets the requirements for a wide range of SAXS applications, including anomalous SAXS for multiphase nanoparticles (e.g. semiconductor core‐shell quantum dots) and GISAXS from liquid surfaces.  相似文献   

17.
Nanoparticle (NP) surfaces are modified immediately by the adsorption of proteins when injected into human blood, leading to the formation of a protein corona. The protein‐coated NPs may be recognized by living cells. Furthermore, the adsorption of serum proteins is a continuous competitive dynamic process that is the key to exploring the bioapplication and biosafety of NPs. In this study, the competitive dynamic adsorption of some serum proteins on gold nanoparticles (AuNPs) is investigated by fluorescence emission, dynamic light scattering, and sodium dodecyl sulfate‐polyacrylamide gel electrophoresis. Serum proteins with different AuNPs binding affinities are used to address the competitive dynamic process of protein‐AuNP interactions in vitro. The results show that more abundant serum proteins, such as human serum albumin, adsorb on AuNPs first, and then the higher binding affinity and lower concentration serum proteins, such as fibrinogen (FIB), replace the abundant and lower binding affinity serum proteins. However, the lower binding affinity serum proteins, such as hemoglobin, do not replace the higher binding affinity proteins from the protein‐AuNP conjugates. During the dynamic exchange process, the larger the binding affinities difference between two proteins, the faster the exchange rate. This dynamic exchange process usually takes longer in inner protein‐AuNP conjugates (hard corona) than the external surface of protein‐AuNP conjugates (soft corona).  相似文献   

18.
Combined small‐ and wide‐angle X‐ray scattering (SAXS/WAXS) is a powerful technique for the study of materials at length scales ranging from atomic/molecular sizes (a few angstroms) to the mesoscopic regime (~1 nm to ~1 µm). A set‐up to apply this technique at high X‐ray energies (E > 50 keV) has been developed. Hard X‐rays permit the execution of at least three classes of investigations that are significantly more difficult to perform at standard X‐ray energies (8–20 keV): (i) in situ strain analysis revealing anisotropic strain behaviour both at the atomic (WAXS) as well as at the mesoscopic (SAXS) length scales, (ii) acquisition of WAXS patterns to very large q (>20 Å?1) thus allowing atomic pair distribution function analysis (SAXS/PDF) of micro‐ and nano‐structured materials, and (iii) utilization of complex sample environments involving thick X‐ray windows and/or samples that can be penetrated only by high‐energy X‐rays. Using the reported set‐up a time resolution of approximately two seconds was demonstrated. It is planned to further improve this time resolution in the near future.  相似文献   

19.
A small‐angle X‐ray scattering (SAXS) set‐up has recently been developed at beamline I711 at the MAX II storage ring in Lund (Sweden). An overview of the required modifications is presented here together with a number of application examples. The accessible q range in a SAXS experiment is 0.009–0.3 Å?1 for the standard set‐up but depends on the sample‐to‐detector distance, detector offset, beamstop size and wavelength. The SAXS camera has been designed to have a low background and has three collinear slit sets for collimating the incident beam. The standard beam size is about 0.37 mm × 0.37 mm (full width at half‐maximum) at the sample position, with a flux of 4 × 1010 photons s?1 and λ = 1.1 Å. The vacuum is of the order of 0.05 mbar in the unbroken beam path from the first slits until the exit window in front of the detector. A large sample chamber with a number of lead‐throughs allows different sample environments to be mounted. This station is used for measurements on weakly scattering proteins in solutions and also for colloids, polymers and other nanoscale structures. A special application supported by the beamline is the effort to establish a micro‐fluidic sample environment for structural analysis of samples that are only available in limited quantities. Overall, this work demonstrates how a cost‐effective SAXS station can be constructed on a multipurpose beamline.  相似文献   

20.
The interior structure, morphology and ligand surrounding of a sputtering‐deposited chromium monolayer and Cr/C and Cr/Sc multilayers are determined by various hard X‐ray techniques in order to reveal the growth characteristics of Cr‐based thin films. A Cr monolayer presents a three‐stage growth mode with sudden changes occurring at a layer thickness of ~2 nm and beyond 6 nm. Cr‐based multilayers are proven to have denser structures due to interfacial diffusion and layer growth mode. Cr/C and Cr/Sc multilayers have different interfacial widths resulting from asymmetry, degree of crystallinity and thermal stability. Cr/Sc multilayers present similar ligand surroundings to Cr foil, whereas Cr/C multilayers are similar to Cr monolayers. The aim of this study is to help understand the structural evolution regulation versus layer thickness and to improve the deposition technology of Cr‐based thin films, in particular for obtaining stable Cr‐based multilayers with ultra‐short periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号