首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
An accelerated solvent extraction coupled with gas chromatography‐tandem mass spectrometry (ASE‐GC‐MS/MS) method for detecting dinitolmide residue and its metabolite (3‐amino‐2‐methyl‐5‐nitrobenzamide, 3‐ANOT) in eggs was developed and optimized. The samples were extracted using ASE with acetonitrile as the extractant and were purified by passage through a neutral alumina solid‐phase extraction column. Then, the samples were analyzed using the GC‐MS/MS method. The optimized method parameters were validated according to the requirements set forth by the European Union and the Food and Drug Administration. The average recoveries of dinitolmide and 3‐ANOT from eggs (egg white, egg yolk, and whole egg) at the limit of quantification (LOQ), 0.5 maximum residue limit (MRL), 1 MRL, and 2 MRL were 82.74% to 87.49%, the relative standard deviations (RSDs) were less than 4.63%, and the intra‐day RSDs and the inter‐day RSDs were 2.96% to 5.21% and 3.94% to 6.34%, respectively. The limits of detection and the LOQ were 0.8 to 2.8 μg/kg and 3.0 to 10.0 μg/kg, respectively. The decision limits (CCα) were 3001.69 to 3006.48 μg/kg, and the detection capabilities (CCβ) were 3001.74 to 3005.22 μg/kg. Finally, the new method was successfully applied to the quantitative determination of dinitolmide and 3‐ANOT in 50 commercial eggs from local supermarkets.  相似文献   

2.
《Electrophoresis》2018,39(19):2431-2438
Dispersive liquid–liquid microextraction (DLLME) coupled with CE was developed for simultaneous determination of five types of chlorophenols (CPs), namely 2‐chlorophenol (2‐CP), 4‐chlorophenol (4‐CP), 2,4‐dichlorophenol (2,4‐DCP), 2,6‐dichlorophenol (2,6‐DCP), and 2,4,6‐trichlorophenol (2,4,6‐TCP) in water samples. Several parameters affecting DLLME and CE conditions were systematically investigated. Under the optimized DLLME‐CE conditions, the five CPs were separated completely within 7.5 min and good enrichment factors were obtained of 40, 193, 102, 15, and 107 for 4‐CP, 2,4,6‐TCP, 2,4‐DCP, 2‐CP, and 2,6‐DCP, respectively. Good linearity was attained in the range of 1–200 μg/L for 2,4,6‐TCP, 2,4‐DCP, 2−300 μg/L for 4‐CP and 2‐CP, and 1−300 μg/L for 2,6‐DCP, with correlation coefficients (r) over 0.99. The LOD (S/N = 3) and the LOQ (S/N = 10) were 0.31−0.75 μg/L and 1.01−2.43 μg/L, respectively. Recoveries ranging from 60.85 to 112.36% were obtained with tap, lake, and river water spiked at three concentration levels and the RSDs (for n = 3) were 1.31–11.38%. With the characteristics of simplicity, cost‐saving, and environmental friendliness, the developed DLLME‐CE method proved to be potentially applicable for the rapid, sensitive, and simultaneous determination of trace CPs in complicated water samples.  相似文献   

3.
建立高效液相色谱–串联质谱法(HPLC–MS/MS)测定动物源性食品中玉米赤霉烯酮及其5种代谢产物(α-玉米赤霉烯醇、β-玉米赤霉烯醇、α-玉米赤霉醇、β-玉米赤霉醇、玉米赤霉酮)残留量。在样品中加入4种同位素内标(13C18–玉米赤霉烯酮,D7–α-玉米赤霉烯醇,D7–β-玉米赤霉烯醇,D5–α-玉米赤霉醇)后,经β-葡萄糖苷酶/硫酸酯酶酶解,用叔丁基甲基醚萃取,取上清液氮吹至近干后用三氯甲烷复溶,再用氢氧化钠溶液反向萃取,以HLB固相萃取柱净化后,用HPLC–MS/MS检测。结果表明,玉米赤霉烯酮及其代谢产物在1.0~100.0μg/L范围内线性关系良好,相关系数均大于0.996,方法的检出限为0.04~0.13μg/kg,定量限为0.11~0.43μg/kg。在1.0、4.0、10.0μg/kg三种加标浓度水平下,回收率为77.7%~105.5%,测定结果的相对标准偏差为4.8%~9.8%(n=6)。该方法准确、可靠,灵敏度高,适用于动物源性食品中玉米赤霉烯酮及其代谢产物的定量分析。  相似文献   

4.
We report the fabrication of an anion‐exchange monolithic column in a stainless‐steel chromatographic column (10 mm × 2.1 mm i.d.) using [2‐(acryloyloxy) ethyl]trimethylammonium chloride as the monomer and ethylene dimethacrylate as the crosslinker. The prepared monolith was developed as the adsorbent for the on‐line solid‐phase extraction of salicylic acid in various animal‐origin foodstuffs combined with liquid chromatography and tandem mass spectrometry. The monolith was characterized by using Fourier transform infrared spectroscopy, scanning electron microscopy, nitrogen adsorption analysis, and elemental analysis. Potential factors affecting the on‐line solid‐phase extraction and liquid chromatography with tandem mass spectrometry analysis were studied in detail. Under the optimized conditions, the total analysis time including cleanup and liquid chromatography with tandem mass spectrometry separation was 17 min. The developed method gave the linear range of 15–750 μg/kg, detection limits (S/N = 3) of 5 μg/kg, and quantification limits (S/N = 10) of 15 μg/kg. The recoveries obtained by spiking 10, 20, and 100 μg/kg of salicylic acid in the animal‐origin food samples were in the range of 85.2–98.4%. In addition, the monolith was stable enough for 550 extraction cycles with the precision of peak area ≤11.6%.  相似文献   

5.
Offline dispersive liquid‐liquid microextraction combined with online pressure‐assisted electrokinetic injection was developed to simultaneously enrich seven phenolic compounds in water samples, followed by determination using capillary electrophoresis, namely phenol, 4‐chlorophenol, pentachlorophenol, 2,4,6‐trichlorophenol, 2,4‐dichlorophenol, 2‐chlorophenol, and 2,6‐dichlorophenol. Several parameters affecting separation performance of capillary electrophoresis and the enrichment efficiency of pressure‐assisted electrokinetic injection and dispersive liquid‐liquid microextraction were systematically investigated. Under the optimal conditions, seven phenolic compounds were completely separated within 14 min and good enrichment factors were obtained of 61, 236, 3705, 3288, 920, 86, and 1807 for phenol, 4‐chlorophenol, pentachlorophenol, 2,4,6‐trichlorophenol, 2,4‐dichlorophenol, 2‐chlorophenol, and 2,6‐dichlorophenol, respectively. Good linearity was attained in the range of 0.1–200 μg/L for 2,4‐dichlorophenol, 0.5–200 μg/L for 4‐chlorophenol, pentachlorophenol, 2,4,6‐trichlorophenol, 2‐chlorophenol, and 2,6‐dichlorophenol, as well as 1–200 μg/L for phenol, with correlation coefficients (r) over 0.9905. The limits of detection and quantification ranging from 0.03–0.28 and 0.07–0.94 μg/L were attained. This two step enrichment method was potentially applicable for the rapid and simultaneous determination of phenolic compounds in water samples.  相似文献   

6.
Ionic liquids have been widely used in different fields by advantage of their specific properties. In this work, 1‐methyl‐3‐(3‐trimethoxysilyl propyl)imidazolium chloride was prepared and chemically bonded onto basalt fibers for in‐tube solid‐phase microextraction. Through combining in‐tube extraction device with high‐performance liquid chromatography equipped with a diode array detector, an online enrichment and analysis method for eight polycyclic aromatic hydrocarbons was established under the optimum conditions. A good enrichment factor (52–814), good linearity (0.10–15 and 0.20–15 μg/L), low limits of detection (0.03–0.05 μg/L), and low limits of quantitation (0.10–0.20 μg/L) were achieved using a sample volume of 50 mL. Analysis method was applied to the real samples including the groundwater and wastewater from a chemical industry park, some target analytes were detected and the relative recoveries were in the range of 80.4–116.8%.  相似文献   

7.
Herein, a new dispersive solid‐phase extraction method using a nano magnetic titanium dioxide graphene‐based sorbent in conjunction with high‐performance liquid chromatography and ultraviolet detection was successfully developed. The method was proved to be simple, sensitive, and highly efficient for the trace quantification of sulfacetamide, sulfathiazole, sulfamethoxazole, and sulfadiazine in relatively large volume of aqueous media. Initially, the nano magnetic titanium dioxide graphene‐based sorbent was successfully synthesized and subsequently characterized by scanning electron microscopy and X‐ray diffraction. Then, the sorbent was used for the sorption and extraction of the selected sulfonamides mainly through π–π stacking hydrophobic interactions. Under the established conditions, the calibration curves were linear over the concentration range of 1–200 μg/L. The limit of quantification (precision of 20%, and accuracy of 80–120%) for the detection of each sulfonamide by the proposed method was 1.0 μg/L. To test the extraction efficiency, the method was applied to various fortified real water samples. The average relative recoveries obtained from the fortified samples varied between 90 and 108% with the relative standard deviations of 5.3–10.7%.  相似文献   

8.
An RP LC‐ESI‐MS/MS method for the determination of the migration of 16 primary phthalic acid esters from plastic samples has been developed using distilled water, 3% acetic acid, 10% alcohol, and olive oil as food simulants. Detection limits were 1.6–18.5 μg/kg in distilled water, 1.4–17.3 μg/kg in 3% acetic acid, 1.4–19.2 μg/kg in 10% alcohol, and 31.9–390.8 μg/kg in olive oil. The RSDs were in the range of 0.07–11.28%. The real plastic products inspection showed that only few analyzed samples were phthalates contaminated. Bis‐2‐ethylhexyl ester and dibutyl phthalate were the common items migrated from the plastic products into food and feeds, but the migration concentrations were far below the limits set by European Union (1.5 mg/kg for bis‐2‐ethylhexyl ester and 0.3 mg/kg for dibutyl phthalate).  相似文献   

9.
A simple and rapid dispersive liquid–liquid microextraction method coupled with gas chromatography and mass spectrometry was applied for the determination of glyoxal as quinoxaline, methylglyoxal as 2‐methylquinoxaline, and diacetyl as 2,3‐dimethylquinoxaline in red ginseng products. The performance of the proposed method was evaluated under optimum extraction conditions (extraction solvent: chloroform 100 μL, disperser solvent: methanol 200 μL, derivatizing agent concentration: 5 g/L, reaction time: 1 h, and no addition of salt). The limit of detection and limit of quantitation were 1.30 and 4.33 μg/L for glyoxal, 1.86 and 6.20 μg/L for methylglyoxal, and 1.45 and 4.82 μg/L for diacetyl. The intra‐ and interday relative standard deviations were <4.95 and 5.80%, respectively. The relative recoveries were 92.4–103.9% in red ginseng concentrate and 99.4–110.7% in juice samples. Red ginseng concentrates were found to contain 191–4274 μg/kg of glyoxal, 1336–4798 μg/kg of methylglyoxal, and 0–830 μg/kg of diacetyl, whereas for red ginseng juices, the respective concentrations were 72–865, 69–3613, and 6–344 μg/L.  相似文献   

10.
A new method has been developed for the simultaneous determination of 13 tropane alkaloids in tea and herbal teas using high‐performance liquid chromatography coupled to an Exactive‐Orbitrap analyzer. A mixture of methanol, water, and formic acid was used for the extraction of the target compounds followed by a solid‐phase extraction step. The validated method provided recoveries from 75 to 128% with intra‐ and interday precision lower than or equal to 24% (except for apoatropine). Limits of quantification ranged from 5 to 20 μg/kg. Eleven tea and herbal tea samples and two contaminated samples with Datura stramonium seeds were analyzed. Tropane alkaloids were detected in six samples with concentrations from 5 (apoatropine) to 4340 μg/kg (sum of physoperuvine, pseudotropine, and tropine), whereas concentrations from 5 (apoatropine) to 1725 μg/kg (sum of physoperuvine, pseudotropine, and tropine) were found in the contaminated samples.  相似文献   

11.
A facile and sensitive multi‐residue detection approach of pressurized liquid extraction following high‐performance liquid chromatography tandem mass spectrometry was established to detect the residues of adrenergic drugs, steroids, sedative, colorant and antioxidant in feed. The conditions employed for pressurized liquid extraction involved acetonitrile/ethyl acetate (1:1, v/v) as the extracting solvent, the temperature 80°C, two cycles and a static time of 10 min. The extraction was followed by a solid‐phase extraction clean‐up step. The separation of samples was done by C18 column with the mobile phase of 5 mM ammonium acetate solution and acetonitrile with 0.1% formic acid. The limits of quantification ranged from 0.03 to 1 μg/kg, limits of detection were in a range of 0.01–0.5 μg/kg, and average recoveries were 70.4–98.6%. The pressurized liquid extraction procedure was optimized and overall method was validated in terms of sensitivity, linearity, selectivity, matrix effect, accuracy, recovery and stability of the target drugs in the pressurized liquid extraction extracts solution. The screening method was proved to be fast, selective, accurate and sensitive for screening drugs.  相似文献   

12.
An acryloyl β‐cyclodextrin‐silica hybrid monolithic column for pipette tip solid‐phase extraction and high‐performance liquid chromatography determination of methyl parathion and fenthion has been prepared through a sol–gel polymerization method. The synthesis conditions, including the volume of cross‐linker and the ratio of inorganic solution to organic solution, were optimized. The prepared monolithic column was characterized by thermogravimetric analysis, scanning electron microscopy, and Fourier transform infrared spectroscopy. The eluent type, volume and flow rate, sample volume, flow rate, acidity, and ionic strength were optimized in detail. Under the optimized conditions, a simple and sensitive pipette tip solid‐phase extraction with high‐performance liquid chromatography method was developed for the determination of methyl parathion and fenthion in lettuce. The method yielded a linear calibration curve in the concentration ranges of 15–400 μg/kg for methyl parathion and 20–400 μg/kg for fenthion with correlation coefficients of above 0.9957. The limits of detection were 4.5 μg/kg for methyl parathion and 6.0 μg/kg for fenthion, respectively. The recoveries of methyl parathion and fenthion spiked in lettuce ranged from 96.0 to 104.2% with relative standard deviations less than 8.4%.  相似文献   

13.
An analytical method is presented for the determination of paraben preservatives in semisolid cream samples by matrix solid‐phase dispersion combined with supramolecular solvent‐based microextraction. Due to the oily and sticky nature of the sample matrix, parabens were first extracted from the samples by matrix solid‐phase dispersion using silica as sorbent material with a clean‐up performed with tetrahydrofuran in the elution step. The eluate (500 μL), 1‐decanol (120 μL), and water (4.4 mL) were then mixed in a polyethylene pipette to form supramolecular solvent. Finally, the analytes in the supramolecular solvent were separated and determined by liquid chromatography with ultraviolet detection. Under optimal extraction conditions, the extraction recoveries of the studied compounds were obtained in the range of 63–83%. The limits of detection for the analytes were between 0.03 and 0.04 μg/g. The precision of the method varied between 4.0–6.7 (intraday) and 6.2–7.9% (interday). Finally, the optimized procedure was applied to the determination of the target preservatives in a variety of cream samples (diaper rash, skin allergy, face and hand moisturizing) with satisfactory recoveries (86–102%).  相似文献   

14.
A new, simple and cheap dispersive liquid–liquid microextraction (DLLME) procedure was optimized for the preconcentration of trace amounts of Ni(II) as a prior step to its determination by flame atomic absorption spectrometry (FAAS). It is based on the microextraction of nickel, where appropriate amounts of the extraction solvent (CHCl3), disperser solvent (ethanol) and chelating agent, name 5‐[(Z)‐isoxazol‐3‐yl‐diazenyl]‐2‐methyl‐quinolin‐8‐ol (MMD), were firstly synthesized/characterized and used. Various parameters that affect the extraction procedure such as pH, centrifugation rate and time, the chelating agent (MMD) concentration and sampling volume on the recovery of Ni(II) were investigated. The preconcentration of a 20 ml sample solution was thus enhanced by a factor of 80. The resulting calibration graph was linear in the range of 0.24–10 mg L−1 with a correlation coefficient of 0.9998. The limit of detection (3 s/b) obtained under optimal conditions was 1.00 μg L−1. The relative standard deviation for certified reference material determinations was 1.2%. The accuracy of the method was verified by the determination of Ni(II) in the certified reference material of wastewater (Waste water CWW TMD). The proposed procedure was successfully applied to the determination of Ni(II) in some fake jewelry and cosmetics samples.  相似文献   

15.
The metal–organic framework [(La0.9Sm0.1)2(DPA)3(H2O)3] was synthetized and characterized by X‐ray diffractometry, differential thermogravimetric analysis, and infrared spectroscopy. The material was tested for the development and validation of a matrix solid‐phase dispersion procedure for extraction of atrazine, bifenthrin, bromuconazole, clofentezine, fenbuconazole, flumetralin, procymidone, and pirimicarb, from peppers, with analysis using gas chromatography with mass spectrometry in the selected ion monitoring mode. The method developed was linear over the range tested (50.0–1000.0 μg/kg for procymidone and 200.0–1000.0 μg/kg for all other pesticides), with correlation coefficients ranging from 0.9930 to 0.9992. Experiments were carried out at 250.0, 500.0, and 1000.0 μg/kg fortification levels, and resulted in recoveries in the range of 52.7–135.0%, with coefficient of variation values between 5.2 and 5.4%, respectively, for [(La0.9Sm0.1)2(DPA)3(H2O)3] sorbent. Detection and quantification limits ranged from 16.0 to 67.0 μg/kg and from 50.0 to 200.0 μg/kg, respectively, for the different pesticides studied. The results were compared with literature data. The developed and validated method was applied to real samples. The analysis detected the presence of residues of pesticides procymidone, fenbuconazole, flumetralin, clofentezine, atrazine, and bifenthrin.  相似文献   

16.
The dummy molecularly imprinted polymers were prepared by Pickering emulsion polymerization. 4,4′‐(1‐Phenylethylidene) bisphenol was selected as the dummy template to avoid the leakage of the target bisphenols. The microsphere particles were characterized by scanning electron microscopy and nitrogen adsorption–desorption measurements, demonstrating that the regular‐shaped and medium‐sized particles (40–70 μm) were obtained with a specific surface area of 355.759 m2/g and a total pore volume of 0.561 cm3/g. The molecular imprinting properties of the particles were evaluated by static adsorption and chromatographic evaluation experiments. The association constant and maximum adsorption amount of bisphenol A were 0.115 mmol/L and 3.327 μmol/g using Scatchard analysis. The microsphere particles were then used as a solid‐phase extraction sorbent for selective extraction of seven bisphenols. The method of dummy molecularly imprinted solid‐phase extraction coupled with high‐performance liquid chromatography and diode array detection was successfully established for the extraction and determination of seven bisphenols from environmental sediment samples with method detection limits of 0.6–1.1 ng/g. Good recoveries (75.5–105.2%) for sediment samples at two spiking levels (500 and 250 ng/g) and reproducibility (RSDs < 7.7%, n = 3) were obtained.  相似文献   

17.
A sensitive and effective method for the simultaneous determination of residues from a new fungicide, oxathiapiprolin, and its metabolites (IN‐E8S72 and IN‐WR791) in soil, water, and sediment, was developed using ultra high performance liquid chromatography with tandem mass spectrometry. Three compounds were extracted from water, soil, and sediment by using acetonitrile and different proportions of formic acid aqueous solution (1% v/v for water; 2% v/v for soil; and sediment), and were cleaned with octadecylsilane. The target compounds were determined within 5 min using an electrospray ionization source in the positive mode for oxathiapiprolin and in the negative mode for the two metabolites. The limits of quantification for all the three compounds were 0.1 μg/kg in water and 1 μg/kg in soil and sediment. Recovery studies were performed using three spiked levels (0.1, 1, and 10 μg/kg for water; 1, 10, and 50 μg/kg for soil and sediment). The overall average recoveries ranged from 64.8 to 112.7% with all intra‐ and interday relative standard deviation values below 19.4 and 19.1%, respectively. The method validation confirmed that the proposed method was convenient and reliable for determining residual oxathiapiprolin and its metabolites in soil, water, and sediments.  相似文献   

18.
Danuravir, ritonavir, emtricitabine, and tenofovir are together prescribed against AIDS as a highly active antiretroviral therapy regimen. Micellar liquid chromatography has been applied to determine these four antiretroviral drugs in plasma. The sample preparation is shortened to the dilution of the sample in a micellar solution, filtration, and injection. Clean‐up steps are avoided, due to the solubilization of plasma matrix in micellar media. The drugs were analyzed in <20 min using a mobile phase of 0.06 M sodium dodecyl sulfate/2.5% 1‐pentanol (pH 7) running under isocratic mode through a C18 column at 1 mL/min at room temperature. Absorbance wavelength detection was set at 214 nm. The method was successfully validated following the ICH Harmonized Tripartite Guideline in terms of selectivity, limit of detection (0.080–0.110 μg/mL), limit of quantification (0.240–0.270 μg/mL), linearity between 0.25 and 25 μg/mL (r2 > 0.995), accuracy (89.3–103.2%), precision (<8.2%) and robustness (<7.5%). Real plasma sample from patients taking this therapy were analyzed. This is the first paper showing the simultaneous detection of this four drugs. Therefore, the methodology was proven useful for the routine analysis of these samples in a hospital laboratory for clinical purposes.  相似文献   

19.
The detection frequencies of tefuryltrione, a new type of 4‐hydroxyphenyl‐pyruvate dioxygenase inhibitor herbicide, are rarely reported, probably because of the paucity of analytical methods. Herein, an effective and sensitive analytical method has been developed to detect tefuryltrione in vegetables (tomato and cucumber), cereals (rice and corn), soil, and water by ultra high performance liquid chromatography coupled with tandem mass spectrometry. Comparisons of the performances of dispersive solid‐phase extraction and multiplug filtration cleanup methods were carried out for tefuryltrione in complex matrices. Extraction solvents and purification sorbents were further optimized for dispersive solid‐phase extraction. Tefuryltrione was analyzed with electrospray ionization in the positive mode within 2.0 min. Mean recoveries for tefuryltrione were 75.4–108.9% with relative standard deviations less than 11.0% at three fortification levels (10, 100, 500 μg/kg) in the sample matrixes. Limits of quantification ranged from 0.70 to 5.12 μg/kg, and an excellent linearity (R 2 ≥ 0.9902) was obtained for tefuryltrione at concentrations of 5–1000 μg/L. The results showed that the developed dispersive solid‐phase extraction method could serve as an effective, sensitive, and robust method for routine monitoring of tefuryltrione residue in plants and environmental samples.  相似文献   

20.
A method for determining amitraz and 2,4‐dimethylaniline in honey was established by using ultra‐high‐performance liquid chromatoghaphy and Q Exactive after applying quick, easy, cheap, effective, rugged, and safe extracting process. A suitable extraction method was designed to extract the amitraz and 2,4‐dimethylaniline after a suitable amount of honey samples was dissolved. A Thermo Syncronis C18 column (100 × 2.1 mm, 1.7 μm) was used for chromatographic separation of the samples. Then the two compounds were quantitatively analyzed via a program of Q Exactive. The linearity of amitraz and 2,4‐dimethylaniline was good in the concentration range of 0.5–100 μg/L, and the correlation coefficient R2 was >0.99. The average recovery and relative standard deviation of each component were 81.3–90.0% and 5.1–7.2%. The 24‐ and 48‐h test results showed that the sample needed to be tested within 24 h. The limit of detection was 0.1 μg/kg for amitraz and 2,4‐dimethylaniline, whereas for both the limit of quantitation was 0.3 μg/kg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号