首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structural properties and phase behavior of crosslinked networks embedded in polymer solutions are theoretically investigated. The partial structure factor of the network is calculated using a matrix formulation of the random phase approximation and the forward scattering limit is correlated with the phase behavior. Swelling and deswelling processes are analyzed in terms of the polymer concentration, the mismatch of solvent quality with respect to polymer and network, the polymers incompatibility and their characteristic sizes. Most studies reported so far in the literature have focussed on the swelling of crosslinked networks and gels in pure solvents but the correlation of the structural properties with the phase behavior in the presence of high molecular weight polymers in solution has not been given sufficient attention. The present work is intended to fill this gap in view of the current efforts to develop novel drug encapsulating and targeted delivery devices.  相似文献   

2.
Nanoparticles (NPs) from biopolymers, in particular polysaccharides, attract much attention but they are rarely systematically investigated in comparison to NPs from synthetic polymers. In this report, stable aqueous suspensions of NPs from cellulose alkyl esters with different alkyl chain lengths (cellulose stearoyl, lauroyl, and caproyl ester) and degrees of substitution (DS) are fabricated via nanoprecipitation. Their properties are investigated in terms of the average size, surface charge and polarity, temperature‐responsive crystalline structure, and dry‐state morphology, in relationship with the chemical compositions of cellulose esters. Generally, the average diameters of NPs increase with higher DS and longer alkyl chains length, but the surface hydrophobicity decreases with longer alkyl chain length. The presence of the crystallizable stearoyl groups along polymeric backbones renders polymeric NPs with reversibly temperature‐responsive property. The NPs from cellulose stearoyl esters (CSE) with stearoyl groups of high contents (DS of 1.3 and 3) and poly(vinyl stearate) can be altered between more crystalline, solid nanospheres, and amorphous, liquid nanodroplets without the loss of their stability by changing the temperature. In comparison, NPs from CSE with a low DS of 0.3, cellulose lauroyl and caproyl ester contain only slightly ordered structure.  相似文献   

3.
A set of three types of silver nanoparticles (Ag NPs) are prepared, which have the same Ag cores, but different surface chemistry. Ag cores are stabilized with mercaptoundecanoic acid (MUA) or with a polymer shell [poly(isobutylene‐alt‐maleic anhydride) (PMA)]. In order to reduce cellular uptake, the polymer‐coated Ag NPs are additionally modified with polyethylene glycol (PEG). Corrosion (oxidation) of the NPs is quantified and their colloidal stability is investigated. MUA‐coated NPs have a much lower colloidal stability than PMA‐coated NPs and are largely agglomerated. All Ag NPs corrode faster in an acidic environment and thus more Ag(I) ions are released inside endosomal/lysosomal compartments. PMA coating does not reduce leaching of Ag(I) ions compared with MUA coating. PEGylation reduces NP cellular uptake and also the toxicity. PMA‐coated NPs have reduced toxicity compared with MUA‐coated NPs. All studied Ag NPs were less toxic than free Ag(I) ions. All in all, the cytotoxicity of Ag NPs is correlated on their uptake by cells and agglomeration behavior.  相似文献   

4.
A functionalization of iron oxide nanoparticles (NPs) of different diameters by the amphiphilic invertible polymer, (PEG600‐alt‐PTHF650)k (PEG and PTHF stand for poly(ethylene glycol) and poly(tetrahydrofuran), respectively), leads to different NP/polymer architectures for dye/drug uptake and release, as is reported here for the first time. It is demonstrated that 18.6 ± 1.4 and 11.9 ± 0.6 nm NPs are individually coated by this polymer, while 5.9 ± 0.6 nm NPs form nanoparticle clusters (NPCs) which could be isolated by either ultracentrifugation or magnetic separation. This phenomenon is most likely due to the character of the (PEG600‐alt‐PTHF650)k macromolecule with alternating hydrophilic and hydrophobic fragments and its dimensions sufficient to cause NP clustering. Utilizing Rhodamine B base (RBB) and doxorubicin (DOX), the data on uptake upon mixing and further release via inversion into octanol (mimicking the penetration of the cell biomembrane) are presented. The magnetic NPCs display enhanced uptake and release of both RBB and DOX most likely due to the higher retained polymer amount. The NPCs also display exceptional magnetic resonance imaging properties. This and the high uptake/release efficiency of the NPCs combined with easy magnetic separation make them promising for theranostic probes for magnetically targeted drug delivery.  相似文献   

5.
Recently, the use of nanomaterials as intracellular targeting tools for theranostics has gained heightened interest. Despite the clear advantages posed by surface‐functionalized nanoparticles (NPs) in this regard, limited understanding currently exists due to difficulties in reliably synthesizing NPs with surface functionalizations adequate for use in such applications, as well as the manner of analytics used to assess the cellular uptake and intracellular localization of these NPs. In the present study, two key surface functionalities (a nuclear localization sequence (NLS) and integrin‐ligand (cRGD)) are attached to the surface of multifunctional, silica hybrid magnetic nanoparticles (SHMNPs) containing a polyethylene glycol (PEG) polymer coating using a well‐described, reliable, and reproducible microreactor set‐up. Subsequent analytical interpretation, via laser scanning confocal, transmission electron and dark‐field microscopy, as well as flow cytometry, of the interaction of SHMNPs‐PEG‐cRGD‐NLS with macrophage (J774A.1) and epithelial (HeLa) cells shows internalization of the SHMNPs‐PEG‐cRGD‐NLS in both cell types up to 24 h after 20 μg mL?1 exposure, as well as increasing aggregation inside of vesicles over this time period. The findings of this study show that by incorporating a variety of state‐of‐the‐art analytical and imaging approaches, it is possible to determine the specific effectiveness of surface peptide and ligand sequences upon multifunctional SHMNPs.  相似文献   

6.
The synthesis of core‐shell Au nanoparticles protected by an amphiphilic block copolymer is investigated by distinct reversible addition fragmentation chain transfer (RAFT) emulsion polymerization routes. The controlled polymerization of polymer shells onto Au nanoparticles is attempted by using the macroRAFT (MR) agent based on 2‐(dodecylthiocarbonothioylthio)‐2‐methylpropionic acid synthesized via RAFT polymerization of poly(ethylene glycol) methyl ether acrylate and exploring several approaches, which include (i) post‐modification; (ii) in situ synthesis and (iii) “grafting from” strategies. In the conditions investigated here all these strategies lead to Au polymer nanocomposites but morphological well‐defined core‐shell nanoparticles are only obtained by applying the “grafting from” strategy. In particular, conditions that promote chain extension from the MR agent adsorbed onto the Au nanoparticles are found necessary to obtain nanostructures with such morphological characteristics and that still show the localized surface plasmon resonance typical of colloidal Au nanoparticles.  相似文献   

7.
Poly(methyl methacrylate)s labeled with the anthracene fluorophore were prepared by free radical, anionic, and coordination polymerization yielding atactic and syndiotactic polymers. Unlabeled isotactic poly(methyl methacrylate) was prepared by anionic polymerization. Time-resolved fluorescence spectroscopy was used to study polymer association in solution. The time-dependent decays of fluorescence anisotropy show that stereocomplexation causes an increase in rotational correlation times of anthracene fluorophores both embedded in the polymer backbone and attached at the end of the side chain of polymer molecules. The rotational correlation time of anthracene fluorophore in dimethylformamide as a part of stereocomplex is 11.9 and 30 ns in the side chain and embedded in the polymer backbone, respectively, and shorter than 3 ns in noncomplexing solvent.  相似文献   

8.
Pulsed laser ablation of Aluminium (Al) in pure water rapidly forms a thin alumina (Al2O3) layer which drastically modifies surface plasmon resonance (SPR) absorption characteristics in deep-UV region. Initially, pure aluminium nanoparticles (NPs) are generated in water without any stabilizers or surfactants at low laser fluence which gradually transform to stable Al-Al2O3 core-shell nanostructure with increasing either residency time or fluence. The role of laser wavelength and fluence on the SPR properties and oxidation characteristics of Al NPs has been investigated in detail. We also present a one-step in situ synthesis of oxide-free stable Al NPs in biocompatible polymer solutions using laser ablation in liquid method. We have used nonionic polymers (PVP, PVA and PEG) and anionic surfactant (SDS) stabilizer to suppress the Al2O3 formation and studied the effect of polymer functional group, polymeric chain length, polymer concentration and anionic surfactant on the incipient embryonic aluminium particles and their sizes. The different functional groups of polymers resulted in different oxidation states of Al. PVP and PVA polymers resulted in pure Al NPs; however, PEG and SDS resulted in alumina-modified Al NPs. The Al nanoparticles capped with PVP, PVA, and PEG show a good correlation between nanoparticle stability and monomeric length of the polymer chain.  相似文献   

9.
A dendritic amphiphilic block copolymer H40‐poly(d,l ‐lactide)‐block‐d‐α‐tocopheryl polyethylene glycol 1000 succinate (H40‐PLA‐b‐TPGS) is synthesized, which is then employed to develop a system of nanoparticles (NPs) loaded with docetaxel (DTX) as a model drug for cancer treatment due to its higher drug‐loading content and drug encapsulation efficiency, smaller particle size, faster drug release, and higher cellular uptake in comparison to the linear PLA polymer NPs and PLA‐b‐TPGS copolymer NPs. The drug‐loaded NPs are prepared by a modified nanoprecipitation method and characterized in terms of size and size distribution, surface morphology, drug release profile, and physical state of DTX. Cellular uptake of coumarin 6‐loaded NPs by MCF‐7 cancer cells is determined by flow cytometry and confocal laser scanning microscopy. The antitumor efficacy of the drug‐loaded NPs is investigated in vitro by MTT assay and in vivo by xenograft tumor model. The 72 h IC50 of the drug formulated in the PLA, PLA‐b‐TPGS, and H40‐PLA‐b‐TPGS NPs is found to be, 1.5 ± 0.3, 0.9 ± 0.1, and 0.15 ± 0.06 μg mL?1, which are 7.3, 12.2, and 73.3‐fold effective than 11.0 ± 1.2 μg mL?1 for Taxotere, respectively. Such advantages are further confirmed by the measurement of the tumor size and weight.  相似文献   

10.
In this work, uniform, quasi‐spherical gold nanoparticles (Au NPs) with sizes of 31–577 nm are prepared via one‐pot seeded growth with the aid of tris‐base (TB). Distinct from the seeded growth methods available in literature, the present method can be simply implemented by subsequently adding the aqueous dispersion of the 17 nm Au‐NP seeds and the aqueous solution of HAuCl4 into the boiling aqueous TB solution. It is found that at the optimal pH range, the sizes of the final Au NPs and their concentrations are simply controlled by either the particle number of the Au seed dispersion or the concentration of the HAuCl4 solution, while the latter enables us to produce large Au NPs at very high concentration. Moreover, as‐prepared Au NPs of various sizes are coated on glass substrates to test their surface‐enhanced Raman scattering (SERS) activities by using 4‐aminothiophenol (4‐ATP) molecules as probes, which exhibit “volcano type” dependence on the Au NP sizes at fixed excitation wavelength. Furthermore, the Au NPs with sizes of ≈97 and 408 nm exhibit the largest SERS enhancement at the excitation wavelength of 633 and 785 nm, respectively.  相似文献   

11.
The stress-elongation relations at large deformations for the polymer network chains with randomcoiled and supercoiled conformations are investigated using the polysiloxane networks with high elongations at break far over 10. Supercoil is the conformation of network chains in deswollen polymer networks which are made by removing solvent from the networks crosslinked in solutions at low polymer concentrations. The validity of the scaling concept of Pincus blob for the mechanical response of a polymer chain is experimentally confirmed for the network composed of randomcoiled chains. The analysis of the stress- relations for the deswollen networks comprised of supercoiled chains on the basis of the Pincus blob concept suggests that supercoil is a much more contracted conformation relative to randomcoil. Received: 25 August 1997 / Received in final form: 13 October 1997 / Accepted: 22 January 1998  相似文献   

12.
A dual plasmonic resonance effect on the performance of poly(3‐hexylthiophene) (P3HT):phenyl C61‐butyricacid methyl ester (PC61BM) based polymer solar cells (PSCs) has been demonstrated by selectively incorporating 25 nm colloidal gold nanoparticles (Au NPs) in a solution‐processed molybdenum oxide (MoO3) anode buffer layer and 5 nm colloidal Au NPs in the active P3HT:PCBM layer. The devices exhibit up to ~20% improvement in power conversion efficiency which is attributed to the dual effect of localized surface plasmon resonance (LSPR) of Au NPs with enhanced light absorption and exciton generation. Our report shows a guideline on the usage of dual LSPR effect for the solution‐processed polymer solar cells to achieve high efficiencies. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

13.
Janus particles, particles that have two distinct aspects on their surface or interiors, have attracted much attention due to their potential for application. For the application of Janus particles to high‐resolution displays, and as light sources for optical circuits and fluorescent probes, the Janus particles should be nanosize to ensure high‐resolution display and analysis, responsive to external stimuli, and highly fluorescent. However, it is still a challenging issue to develop such highly fluorescent nanoscale Janus particles and control their alignment. Magnetoresponsive Janus particles, of which the orientation can be controlled by an external magnetic field, are prepared by the simple introduction of polymer‐coated magnetic nanoparticles (NPs) into the hemispheres of Janus particles. If these magnetoresponsive Janus particles can be combined with a strong fluorescence system, then they could be ideal candidates as components of the previously mentioned applications. In the present study, Janus particles are prepared with a fluorescent dye and gold nanoparticles (Au NPs) on one side. The optical properties of the resulting particles are assessed and discussed. Furthermore, the response of composite Janus particles containing dyes, Au NPs, and iron oxide NPs to an external magnetic field is discussed.  相似文献   

14.
Local piezoelectric properties of ZnO nanoparticles (NPs) embedded in a photo‐epoxy polymer are investigated by piezoresponse force microscopy (PFM). Integrating ZnO NPs into a photosensitive SU‐8 polymer matrix not only retains the highly desired piezoelectric properties of the ZnO, but also preserves photosensitivity and optical transparency of the SU‐8 polymer. These results have strong implications for simple photolithography based low‐cost fabrication of piezoelectric microelectromechanicalsystems (MEMS) and nanoelectromechanicalsystems (NEMS) in both sensing and energy harvesting applications. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Gold nanoparticles (NPs) are rapidly and efficiently formed under ambient conditions with a novel and highly-efficient sonochemical promoter. Despite of the presence of free oxygen, 3-glycidoxypropyltrimethoxysilane (GPTMS) showed remarkable efficiency in promoting the reduction rate of Au (III) than that of conventional promoters (primary alcohols). This is likely attributed to the formation of a variety of radical scavengers, which are alcoholic products from sonochemical hydrolysis of the epoxide group and methoxysilane moieties of GPTMS under weakly acidic conditions. Interestingly, the promotion is quenched by amine- or thiol-functionalized alkoxysilane, thereby producing marginal amounts of gold NPs. Furthermore, products of hydrolyzed GPTMS were confirmed to attach on the surface of gold NPs by attenuated total reflectance-Fourier transform infrared spectroscopy. However, according to transmission electron microscopy images, gold NPs that were produced in the presence of GPTMS tend to fuse with each other as condensation of silanols occurs, forming worm- or nugget-like gold nanostructures. The use of long chain surfactants (i.e. polyethylene glycol terminated with hydroxyl or carboxyl) inhibited the fusion, leading to mono-dispersed gold NPs. Additionally, the fact that this approach requires neither an ultrasound source with high frequency nor anaerobic conditions provides a huge advantage. These findings could potentially open an avenue for rapid and large-scale green-synthesis of gold NPs in future work.  相似文献   

16.
The synthesis of homopolymer and diblock copolymers on surfaces was demonstrated using electrodeposition of a methacrylate-functionalized carbazole dendron and subsequent reversible addition-fragmentation chain transfer (RAFT) “grafting-through” polymerization. First, the anodically electroactive carbazole dendron with methacrylate moiety (G1CzMA) was electrodeposited over a conducting surface (i.e. gold or indium tin oxide (ITO)) using cyclic voltammetry (CV). The electrodeposition process formed a crosslinked layer of carbazole units bearing exposed methacrylate moieties. This film was then used as the surface for RAFT polymerization process of methyl methacrylate (MMA), styrene (S), and tert-butyl acrylate (TBA) in the presence of a free RAFT agent and a free radical initiator, resulting in grafted polymer chains. The molecular weights and the polydispersity indices (PDI) of the sacrificial polymers were determined by gel permeation chromatography (GPC). The stages of surface modification were investigated using X-ray photoelectron spectroscopy (XPS), ellipsometry, and atomic force microscopy (AFM) to confirm the surface composition, thickness, and film morphology, respectively. UV-Vis spectroscopy also confirmed the formation of an electro-optically active crosslinked carbazole film with a p \pi - p* \pi^{{\ast}}_{} absorption band from 450-650nm. Static water contact angle measurements confirmed the changes in surface energy of the ultrathin films with each modification step. The controlled polymer growth from the conducting polymer-modified surface suggests the viability of combining electrodeposition and grafting-through approach to form functional polymer ultrathin films.  相似文献   

17.
Nanoparticles (NPs) of cobalt are synthesized in shallow layers of polyimide using 40 keV implantation of Co+ ions with a few different fluences at various ion current densities. Nucleation of individual NPs at low fluencies and their percolation at high fluencies are crucial processes governing the electrical and magnetic properties of the metal/polymer nanocomposites that can be controlled by the implantation regimes. In particular, one can tune the magnetoresistance between negative and positive through appropriate choice of ion fluence and current density. The found non‐monotonous dependence of the magnetoresistance on the applied magnetic field allows suggestion of spin‐dependent domain wall scattering affecting the electron transport. The samples implanted with low fluencies demonstrate superparamagnetic behavior down to very low blocking temperatures. For high fluence (1.25 × 1017 cm−2) the transition to ferromagnetic ordering is observed that is related to the increased magnetic interaction of NPs.  相似文献   

18.
A comparative study of the optical properties of organic fluorescent nanoparticles fabricated by laser ablation (NPs‐LA), reprecipitation (NPs‐RP), and microemulsion (NPs‐ME) methods is presented. These nanoparticles contain a fluorene‐based p‐conjugated molecule (BT2). Distinctive electronic transitions are observed in samples due to the specific way in which the molecule BT2 is assembled in each type of nanoparticles; for instance, transitions involved in absorption and emission spectra of NPs‐LA result in blueshifting with respect to the molecular solution of BT2, whereas redshifting is observed in NPs‐RP and NPs‐ME. Further, the results show that under infrared excitation, the aqueous suspensions of NPs‐LA exhibit the highest fluorescence induced by two‐photon absorption (≈790 GM at 740 nm), as well as the best photostability, compared with aqueous suspensions of NPs‐RP and NPs‐ME. The nanoparticles synthetized by the three aforementioned methods are employed as exogenous agents for the visualization of human cervical cancer cell line (HeLa) using confocal and two‐photon microscopy. Under similar experimental conditions, it is found that microscopy images of the best quality are obtained with NPs‐LA. These results show that laser ablation is a suitable technique for the fabrication of organic fluorescent nanoparticles used as contrast agents for in vitro fluorescence microscopy.  相似文献   

19.
Various C‐doped metal oxide nanoparticles (NPs) are prepared from metal nitrates in poly‐(methyl vinyl ether‐co‐maleic anhydride) (PVM/MA) nanoreactors. The loading of metal nitrates in the nanoreactors is realized via a process of solution‐enhanced dispersion by supercritical CO2. When the temperature exceeds the thermal decomposition temperature of the nitrates, the nitrates‐loaded nanoreactors transform into C‐doped metal oxide NPs. ZnO, NiO, and Co3O4 NPs as representative of the doped oxides are successfully fabricated. A precise control over the doping concentration and doping site in the lattice is achieved by changing the mass ratio between PVM/MA and metal nitrate. The controllable carbon doping avoids undesirable aggregation of carbon species and metal oxide NPs, endows the NPs with broad and strong absorption bands in the visible light region, and creates channels for separation of photo‐generated electrons and holes. In this regard, the resultant C‐doped metal oxide NPs exhibit excellent photocatalytic, photo‐induced antibacterial, and photothermal performances.  相似文献   

20.
Biocompatible single‐component theranostic nanoagents instinctly affording multiple imaging modalities with satisfying therapeutic functions are highly desirable for anticancer treatments. Although cobalt‐based phosphides are well‐recognized as competent electrocatalysts, their potentials for biomedical applications remain unexplored. In this work, cobalt phosphide nanoparticles (CoP NPs) are developed to be a powerful theranostic agent for multimodal imaging and anticancer photothermal therapy. The uniform CoP NPs in a size of ≈21 nm are synthesized via a facile thermal decomposition method, followed by surface modification. The resultant CoP NPs exhibit excellent compatibility and stability in water as well as various physiological solutions. Supported by the good biocompatibility, strong near‐infrared absorption, and high photothermal conversion property, significant photothermal effect of the NPs is demonstrated, realizing efficient hyperthermia ablation on cancer cells. Importantly, the CoP NPs have shown considerable capabilities on high‐contrast in vitro and in vivo triple‐modal imaging, including infrared thermal (IRT), photoacoustic (PA), and T2‐weighted magnetic resonance (MR) imaging. This work has unraveled the promising potentials of CoP‐based nanoagent for precise diagnosis and efficient therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号