首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The efficiency of the poly(3-hexylthiophene)(P3HT) and [6,6]-phenyl C_(61)-butyric acid methyl ester(PC_(61)BM) based organic solar cells was enhanced by using 1,2,4-trichlorobenzene(TCB) as a processing additive to control the blend morphology. The addition of TCB improved the arrangement of P3HT which resulted in good phase separated blend films. Correspondingly, the optimized solar cells showed a power conversion efficiency(PCE) of 4.17% with a fill factor(FF) of 0.69, which were higher than those of common thermal annealing devices(PCE 3.84%, FF 0.67). The efficiency was further improved to 4.74% by thermal annealing at 150 °C for 10 min with a higher FF of 0.74.  相似文献   

2.
程沛  史钦钦  占肖卫 《化学学报》2015,73(3):252-256
成功构筑了基于聚合物给体P3HT/有机小分子TT-TTPA/富勒烯受体PC61BM的三元共混有机太阳能电池. 共轭有机小分子TT-TTPA与PC61BM有很好的相容性, 相分离很小. 溶剂退火和热退火时, 含量相对较少的TT-TTPA容易从P3HT相中脱离出来进入PC61BM相, 增加P3HT的结晶空间, 从而提高P3HT的结晶度和相纯度. 通过引入少量的第三组分TT-TTPA, 制备的三元共混有机太阳能电池获得了4.41%的能量转换效率, 相对于P3HT/PC61BM二元共混体系的效率(3.85%)提高显著.  相似文献   

3.
In this study, cyclic poly(3‐hexylthiophene‐2,5‐diyl) (c‐P3HT) with a controlled Mn was synthesized by the intramolecular cyclization of α‐bromo‐ω‐ethynyl‐functionalized P3HT via the Sonogashira coupling reaction. The effect of the cyclic structure, which does not have terminal groups of polymers, on the photoelectric conversion characteristics was investigated in comparison to linear P3HT (l‐P3HT). c‐P3HT was successfully synthesized with Mn ≈ 17,000, dispersity ≈ 1.2, and regioregularity ≈ 99%. The hole mobility was determined to be 5.1 × 10?4 cm2 V?1 s?1 by time‐of‐flight (TOF) experiment. This was comparable to that of l‐P3HT of 5.6 × 10?4 cm2 V?1 s?1. Organic solar cell systems were fabricated with each polymer by blending them with [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM). The l‐P3HT:PC71BM system showed a dispersive TOF photocurrent profile for electron transport, whereas a nondispersive profile was observed for c‐P3HT:PC71BM. In addition, an amount of collected electrons in c‐P3HT:PC71BM was greater than that in l‐P3HT:PC71BM for TOF experiments. The photoelectric conversion characteristics were improved by using c‐P3HT rather than l‐P3HT (power conversion efficiency [PCE] = 4.05% vs 3.23%), reflecting the nondispersive transport and the improvement of electron collection. PCEs will be much improved by applying this cyclic concept to highly‐efficient OSC polymers. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 266–271  相似文献   

4.
马伟 《高分子科学》2017,35(2):184-197
Ternary organic solar cells have drawn great attention because the highest power conversion efficiencies have reached ~12%, showing a promising prospect for the future applications. However, most reported ternary solar cells focus on the increase of light absorption and the optimization of energy alignment, but ignore the importance of morphology. Herein, we summarize the morphology optimization on the ternary blends with different structural aspects, such as controlling crystallinity, crystal orientation, domain size, and domain purity. Furthermore, the fundamental mechanism of ternary solar cells which is related to the morphology has been described. The efforts here will provide a guiding role for the morphology optimization on the ternary solar cells in the future.  相似文献   

5.
基于溶液法加工制备的聚合物太阳能电池的高温热稳定性是决定器件能否兼容后续高温热封装工艺, 如热压封装、高温原子层沉积(ALD)等的一个关键. 本文分别利用聚(3, 4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)和MoO3作为阳极缓冲层, 以及ZnO和LiF 作为阴极缓冲层, 制备了结构为氧化铟锡(ITO)/阳极缓冲层/3-己基取代聚噻吩:(6, 6)-苯基C61-丁酸甲酯(P3HT:PC61BM)/阴极缓冲层/Al 的太阳能电池, 系统地比较研究了不同界面缓冲材料对器件光电转换性能及稳定性的影响, 特别是在高温煺火条件下器件的性能稳定性差异. 结果表明, 聚合物太阳能电池的热稳定性同器件的结构以及所用的缓冲层材料有密切的相关性. 其中, 利用MoO3及ZnO分别作为阳极与阴极界面修饰层的P3HT:PC61BM器件在120-150 ℃的温度范围内能够较好地保持器件的光电转换性能. 这一结果为后续需要高温封装工艺的器件提供了有意义的结构优化指导. 此外, 研究结果还表明利用ZnO作为阴极缓冲层能够改善器件的长时间稳定性.  相似文献   

6.
Numerous recent publications detail higher absorption and photovoltaic performance within organic photovoltaic (OPV) devices which are loaded with Au or Ag nanoparticles to leverage the light management properties of the localized surface plasmon resonance (LSPR). This report details the impact upon film morphology and polymer/nanoparticle interactions caused by incorporation of polystyrene‐coated Au nanoparticles (Au/PS) into the P3HT:PC61BM bulk heterojunction film. Nanostructural analysis by transmission electron microscopy and X‐ray scattering reveals tunable Au/PS particle assembly that depends upon the choice of casting solvent, polymer chain length, film drying time, and Au/PS particle loading density. This Au/PS particle assembly has implications on the spectral position of the Au nanoparticle LSPR, which shifts from 535 nm for individually dispersed particles in toluene to 650 nm for particles arranged in large clusters within the P3HT:PC61BM matrix. These results suggest a critical impact from PS/P3HT phase separation, which causes controlled assembly of a separate Au/PS phase in the nanoparticle/OPV composite; controlled Au/PS phase formation provides a blueprint for designing AuNP/OPV hybrid films that impart tunable optical behavior and potentially improve photovoltaic performance. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 709–720  相似文献   

7.
Journal of Solid State Electrochemistry - In this report, the effects of photoactive blend compositions, film thicknesses, and annealing conditions on the P3HT:PC70BM solar cells performance and...  相似文献   

8.
Power conversion efficiency (PCE) of phenylenevinylene‐based copolymer with BF2 azopyrrole complex (PB)/modified PC70BM, that is, CN‐PC70BM bulk heterojunction solar cells improves from 2.16 to 4.90% using a processing additive and drying condition. The results demonstrate that a processing additive and drying condition provides an effective means to control both the surface roughness and finer interpenetrating networks to enhance the exciton dissociation into free charge carriers, charge transportation, and collection. Taking into the account of simple device fabrication process without thermal annealing, the PCE of the polymer solar cell can further improved by chloronapthalene (CN) additive under the fast drying condition. The average carrier lifetimes extracted from the impedance spectra and found to correlate with measured PCEs. At short circuit conditions and illumination, the average charge carrier lifetime was found vary from 16.8 to 32 μs with power conversion efficiencies ranging from 3.0 to 4.9%. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

9.
Bulk heterojunctions (BHJs) based on semiconducting electron–donor polymer and electron–acceptor fullerene have been extensively investigated as potential photoactive layers for organic solar cells (OSCs). In the experimental studies, poly‐(3‐hexyl‐thiophene) (P3HT) polymers are hardly monodisperse as the synthesis of highly monodisperse polymer mixture is a near impossible task to achieve. However, the majority of the computational efforts on P3HT: phenyl‐C61‐butyric acid methyl ester (P3HT:PCBM)‐based OSCs, a monodisperse P3HT is usually considered. Here, results from coarse‐grained molecular dynamics simulations of solvent evaporation and thermal annealing process of the BHJ are shared describing the effect of variability in molecular weight (also known as polydispersity) on the morphology of the active layer. Results affirm that polydispersity is beneficial for charge separation as the interfacial area is observed to increase with higher dispersity. Calculations of percolation and orientation tensors, on the other hand, reveal that a certain polydispersity index ranging between 1.05 and 1.10 should be maintained for optimal charge transport. Most importantly, these results point out that the consideration of polydispersity should be considered in computational studies of polymer‐based OSCs. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 895–903  相似文献   

10.
《中国化学快报》2021,32(9):2904-2908
With the emergence of non-fullerene acceptors (NFAs), the power conversion efficiencies (PCEs) of all-small-molecule organic solar cells (ASM-OSCs) have been significantly improved. However, due to the strong crystallinities of small molecules, it is much more challenging to obtain the ideal phase separation morphology and efficient charge transport pathways for ASM-OSCs. Here, a high-efficiency ternary ASM-OSC has been successfully constructed based on H11/IDIC-4F system by introduction of IDIC with a similar backbone as IDIC-4F but weak crystallinity. Notably, the addition of IDIC has effectively suppressed large-scale phase aggregation and optimized the morphology of the blend film. More importantly, the molecular orientation has also been significantly adjusted, and a mixed face-on and edge-on orientation has formed, thus establishing a more favorable three-dimensional (3D) charge pathways in the active layer. With these improvements, the enhanced short-circuit current density (JSC) and fill factor (FF) of the ternary system have been achieved. In addition, because of the high lowest unoccupied molecular orbital (LUMO) energy level of IDIC as well as the alloyed structure of the IDIC and IDIC-4F, the promoted open circuit voltage (VOC) of the ternary system has also been realized.  相似文献   

11.
A new conjugated polymer (PBAIIDTT) based on bay‐annulated indigo and indacenodithieno[3,2‐b]thiophene was designed, synthesized, and characterized. PBAIIDTT shows strong absorption in 400–500 and 600–800 nm, and its HOMO and LUMO energy levels are −5.45 eV and −3.65 eV, respectively. In organic field‐effect transistors, the polymer exhibits a relatively high hole mobility of 0.39 cm2 V−1 s−1. PBAIIDTT was added to poly(3‐hexylthiophene) (P3HT) and phenyl‐C61‐butyric acid methyl ester (PC61BM) based organic solar cells. Ternary blend solar cells with 10% PBAIIDTT show an increased short circuit current density due to the broadened photocurrent generated in the near‐infrared region, and a power conversion efficiency of 3.78%, which is higher than that of the P3HT:PC61BM binary control devices (3.33%). © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 213–220  相似文献   

12.
A series of polymer photodetectors with device configuration of ITO/PEDOT:PSS/P3 HT:PC61 BM/C60/Al were prepared by using P3 HT as the donor material and PC61 BM as the acceptor material. By regulating the content of 1,8-diiodooctane(DIO)(V/V: 1%, 3%, 5%) as a processing additive, the morphology of the active layer can be greatly improved. With C60 as the hole blocking layer, the dark current density of the device can be reduced b...  相似文献   

13.
We have designed and synthesized two wide bandgap new donor-acceptor (D-A) copolymers consisting of the same alkylthiazole-substituted benzo[1,2-b;4,5-b′]dithiophene (BDTTz) donor unit and but different acceptor units, i.e., thiazolo[5,4-d]thiazole (TTZ) ( P122 ) and 1,3,-4 thiadiazole (TDz) ( P123 ) and investigated their optical and electrochemical properties. We have employed these copolymers as donor and fullerene (PC 71 BM) and narrow bandgap non-fullerene (Y6) as acceptor, to fabricate binary and ternary bulk heterojunction polymer solar cells (PSCs). The overall power conversion efficiency (PCE) of optimized binary bulk heterojunction PSCs based on P122 :Y6 and P123 :Y6 is 12.60% and 13.16%, respectively. The higher PCE for PSCs based on P123 than P122 counterparts may be associated with the broader absorption profile of the P123 and more charge carrier mobilities than that for the P122 active layer. With the incorporation of small amount of PC71BM into either P122 :Y6 or P123 :Y6 binary blend, the corresponding ternary PSCs showed an overall PCE of 14.89% and 15.52%, respectively, which is higher than the binary counterparts using either Y6 or PC71BM as acceptor. Incorporating the PC71BM in the binary host blend increases the absorption in the 300–500 nm wavelength region, generating more excitons in the active ternary layer and helping to dissociate the excitons into free charge carriers more effectively. The more appropriate nanoscale phase separation in the active ternary layer than the binary counterpart may be one of the reasons for higher PCE.  相似文献   

14.
15.
Phase separation in the donor‐acceptor blend poly(3‐hexylthiophene‐2,5‐diyl):[6,6]‐phenyl‐C61‐butyric acid methyl ester (P3HT:PCBM) during evaporation of a solvent using coarse‐grained molecular dynamics simulations is studied here. To this end, an equilibrated P3HT:PCBM:solvent mixture is placed in an elongated simulation box, after which solvent molecules are removed at regular time intervals from a region above the film. Three often‐used solvents are considered: chloroform (CFM), chlorobenzene (CLB), and orthodichlorobenzene (oDCB). The coarse‐grained solvent–solvent interaction parameters are tuned to reproduce the atmospheric boiling temperatures, while the PCBM–solvent interaction parameters are tuned to reproduce the PCBM solubilities. Other parameters are taken from the literature. During evaporation, the formation of a crust that is depleted of solvent, in which aggregation of P3HT and PCBM occurs, is observed. In agreement with experiment, the top region of the dry film is rich in PCBM for the cases of CLB and oDCB, and rich in P3HT for the case of CFM, while the very top layer of the film is always rich in P3HT. This vertical separation is ascribed to a competition between the tendency of P3HT to move to the surface due to its low surface energy and the different tendencies of PCBM to be dragged along to the surface by the evaporating solvent depending on its solubility. Also in agreement with experiment, the P3HT–PCBM interface area is larger for CLB and oDCB than for CFM. For CLB and oDCB, an indication for a spinodal P3HT–PCBM decomposition starting from the top and bottom surface is found, whereas for CFM the phase separation appears to be initiated in the bulk of the film.

  相似文献   


16.
In this article, it is demonstrated that doctor blading of thin poly‐3‐hexylthiophene/phenyl‐C61‐butyric acid methyl ester (1/1) bulk‐hetero junction films from toluene leads to an improved nanocrystallinity, when compared with their unannealed chlorobenzene processed counterparts. This difference in morphology was demonstrated by solid‐state NMR and Rapid Heating Cooling Calorimetry (RHC), being useful complementary techniques to investigate the active layer morphology of photovoltaic devices. An increased PC60BM nanocrystallinity is indicated by several NMR relaxation decay times (T1C, T1H, and T1ρH) and confirmed by an increase of the melting enthalpy in RHC experiments. An improved solar cell performance further strengthens this conclusion. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
Two donor–acceptor (D‐A) conjugated polymers, PQx and PphQx, composed of alkylthienyl‐substituted benzo[1,2‐b:4,5‐b']dithiophene (BDTT) as the electron donor and the new electron acceptors quinoxaline (Qx) or phenanthrenequinoxaline (phQx), were synthesized with Stille cross‐coupling reactions. The number‐averaged molecular weights (Mn) of PQx and PphQx were found to be 25.1 and 23.2 kDa, respectively, with a dispersity of 2.6. The band‐gap energies of PQx and PphQx are 1.82 and 1.75 eV, respectively. These results indicate that, because phQx units have highly planar structures, their inclusion in D‐A polymers will be a very effective method for increasing the polymers' effective conjugation lengths. The hole mobilities of PQx and PphQx were determined to be 5.0 × 10?5 and 2.2 × 10?4 cm2 V?1 s?1, respectively. A polymer solar cell device prepared with PphQx as the active layer was found to exhibit a power conversion efficiency (PCE) of 5.03%; thus, the introduction of phQx units enhanced both the short circuit current density and PCE of the device. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2804–2810  相似文献   

18.
A new semiconducting polymer, poly((5,5‐E‐α‐((2‐thienyl)methylene)‐2‐thiopheneacetonitrile)‐alt‐2,6‐[(1,5‐didecyloxy)naphthalene])) (PBTADN), an alternating copolymer of 2,3‐bis‐(thiophene‐2‐yl)‐acrylronitrile and didecyloxy naphthalene, is synthesized and used as an active material for organic thin film transistors (OTFTs) and organic solar cells. The incorporation of 2,3‐bis‐(thiophene‐2‐yl)‐acrylronitrile as an electron deficient group and didecyloxy naphthalene as an electron rich group resulted in a relatively low bandgap, high charge carrier mobility, and finally good photovoltaic performances of PBTADN solar cells. Because of the excellent miscibility of PBTADN and PC71BM, as confirmed by Grazing Incident X‐ray Scattering (GIXS) measurements and Transmission Electron Microscopy (TEM), homogeneous film morphology was achieved. The maximum power conversion efficiency of the PBTADN:PC71BM solar cell reached 2.9% with a Voc of 0.88 V, a short circuit current density (Jsc) of 5.6 mA/cm2, and a fill factor of 59.1%. The solution processed thin film transistor with PBTADN revealed a highest saturation mobility of 0.025 cm2/Vs with an on/off ratio of 104. The molecular weight dependence of the morphology, charge carrier mobility, and finally the photovoltaic performances were also studied and it was found that high molecular weight PBTADN has better self assembly characteristics, showing enhanced performance. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
To deepen the understanding of morphology evolution in bulk heterojunction P3HT:PCBM organic photovoltaics system by thermal treatment, domain‐size‐dependent interfacial energies were first determined by coarse‐grained molecular dynamics modelling and then used in Monte Carlo simulations of the morphology evolution. Thereby initial conditions associated with optimal interfacial surface area, continuous volume, as well as domain sizes, and spatial distributions of the phase separated domains were identified. In line with earlier studies, a 1:1 P3HT:PCBM blend ratio is found to exhibit the most efficient morphology for exciton dissociation and charge transport. Our simulations reveal that preseeding of P3HT crystal at the anode side prior to the annealing process will be instrumental to pin the formation of P3HT at the favorable electrode especially when seeding exceeds a threshold of 10% surface coverage, whereas denser seeding patterns beyond the threshold did not improve the active layer morphology further. The observed trilayer depth profile (in the absence of preseeded P3HT crystals) implies that the commonly used thickness 100 nm of the active layer is not ideal for ensuring that donor and acceptor phases dominate at opposite ends of the active layer. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 270–279  相似文献   

20.
Advanced composite materials aimed for construction of organic photovoltaic cells have been studied by atomic force microscopy (AFM). The composites are based on poly(3-hexylthiophene) (P3HT), [6,6]-phenyl C61-butyric acid methyl ester (PCBM) and two different chiral photosensitive liquid crystalline (LC) materials. The objective of the study was to examine the nanoscale morphology of the active layer without and after annealing at specific temperature. The preliminary results of AFM observation of the morphological changes done on the investigated composites revealed an increase in the surface ordering. The surface area ratio decreases for both studied composites, while the basic roughness parameters (Sa and Sq) have been found toughly dependent on the structure of the photosensitive LC dopant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号