首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
G5.0‐OH PAMAM dendrimers were used to prepare fluorescent silver clusters with weaker ultraviolet irradiation reduction method, in which the molar ratio of Ag+ to PAMAM dendrimers was the key factor to determine the geometry and properties of silver nanoparticles. The results showed that because of G5.0‐OH PAMAM dendrimers as strong encapsulatores, when the molar ratios of Ag+ to PAMAM dendrimers was smaller than 5, the obtained Agn clusters (n<5) had line structures and "molecular‐like" properties, which were highly fluorescent and quite stable in aqueous solution. Whereas when the molar ratios were between 5 and 8, the obtained Agn clusters were 2D structures and their fluorescence was weaker. When the molar ratio was larger than 8, the structure of silver nanoparticles was 3D and no fluorescence was observed from the obtained silver nanoparticles.  相似文献   

2.
Titrations of commercial diaminobutane (DAB) and polyamidoamine (PAMAM) dendrimers by vitamins C (ascorbic acid, AA), B3 (nicotinic acid), and B6 (pyridoxine) were monitored by 1H NMR spectroscopy using the chemical shifts of both dendrimer and vitamin protons and analyzed by comparison with the titration of propylamine. Quaternarizations of the terminal primary amino groups and intradendritic tertiary amino groups, which are nearly quantitative with vitamin C, were characterized by more or less sharp variations (Δδ) of the 1H chemical shift (δ) at the equivalence points. The peripheral primary amino groups of the DAB dendrimers were quaternarized first, but not selectively, whereas a sharp chemical‐shift variation was recorded for the inner methylene protons near the tertiary amines, thereby indicating encapsulation, when all the dendritic amines were quaternarized. With DAB‐G5‐64‐NH2, some excess acid is required to protonate the inner amino groups, presumably because of basicity decrease due to excess charge repulsion. On the other hand, this selectivity was not observed with PAMAM dendrimers. The special case of the titration of the dendrimers by vitamin B6 indicates only dominant supramolecular hydrogen‐bonding interactions and no quaternarization, with core amino groups being privileged, which indicates the strong tendency to encapsulate vitamins. With vitamin B3, a carboxylic acid, titration of DAB‐G3‐16‐NH2 shows that only six peripheral amino groups are protonated on average, even with excess vitamin B3, because protonation is all the more difficult due to increased charge repulsion, as positive charges accumulate around the dendrimer. Inner amino groups interact with this vitamin, however, thus indicating encapsulation presumably with supramolecular hydrogen bonding without much charge transfer.  相似文献   

3.
We investigated structures, vibrational frequencies, and rotational barriers of disilane (Si2H6), hexafluorodisilane (Si2F6), and hexamethyldisilane (Si2Me6) by using ab initio molecular orbital and density functional theories. We employed four different levels of theories (i.e., HF/6–31G*, MP2/6–31G*, BLYP/6–31G*, and B3LYP/6–31G*) to optimize the structures and to calculate the vibrational frequencies (except for Si2Me6 at MP2/6–31G*). MP2/6–31G* calculations reproduce experimental bond lengths well, while BLYP/6–31G* calculations largely overestimate some bond lengths. Vibrational frequencies from density functional theories (BLYP/6–31G* and B3LYP/6–31G*) were in reasonably good agreement with experimental values without employing additional correction factors. We calculated the ΔG(298 K) values of the internal rotation by correcting zero-point vibration energies, thermal vibration energies, and entropies. We performed CISD/6–31G*//MP2/6–31G* calculations and found the ΔG(298 K) values for the internal rotation of Si2H6, Si2F6, and Si2Me6 to be 1.36, 2.06, and 2.69 kcal/mol, respectively. The performance of this level was verified by using G2 and G2(MP2) methods in Si2H6. According to our theoretical results, the ΔG(298 K) values were marginally greater than the ΔE(0 K) values in Si2F6 and Si2Me6 due to the contribution of the entropy. In Si2H6 the ΔE(0 K) and ΔG(298 K) values were coincidently similar due to a cancellation of two opposing contributions between zero-point and thermal vibrational energies, and entropies. Our calculated ΔG(298 K) values were in good agreement with experimental values published recently. In addition, we also performed MM3 calculations on Si2H6 and Si2Me6. MM3 calculated rotational barriers and thermodynamic properties were compared with high level ab initio results. Based on this comparison, MM3 calculations reproduced high level ab initio results in rotational barriers and thermodynamic properties of Si2H6 derivatives including vibrational energies and entropies, although large errors exist in some vibrational frequencies. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 1523–1533, 1997  相似文献   

4.
Gn (n = 3, 4, and 5) poly(amidoamine) (PAMAM) dendrimers were synthesized and peripherally modified with photocleavable o‐nitrobenzyl (NB) groups by reacting o‐nitrobenzaldehyde with the terminal amine groups of PAMAM dendrimers, followed by reducing the imine to amine groups with NaBH4. The NB‐modified dendrimers, Gn‐NB (n = 3, 4, and 5), were characterized by nuclear magnetic resonance and fourier transform infrared spectroscopy. The results showed that the NB groups were successfully attached on the periphery of the dendrimers with near 100% grafting efficiency. Such a photosensitive NB shell could be cut off on irradiation with 365 nm ultraviolet (UV) light. The encapsulation and release of guest molecules, that is, salicylic acid (SA) and adriamycin (ADR), by Gn‐NB were explored. The encapsulation capability of these dendrimers was found to increase as the guest molecular size was decreased and have dependence on the generation of dendrimers as well. For both of SA and ADR, the average encapsulation numbers per dendrimer decreased in the order of G4‐NB > G5‐NB > G3‐NB, indicating that the fourth generation dendrimer was a better container for the guest molecules. The rate of SA release was found to be greater with UV irradiation than that without, suggesting that the NB‐shelled PAMMAM dendrimers could function as a molecular container/box with photoresponsive characteristics. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 551–557, 2010  相似文献   

5.
Ab initio calculations were carried out to understand the effect of electron donating groups (EDG) and electron withdrawing groups (EWG) at the C5 position of cytosine (Cyt) and saturated cytosine (H2Cyt) of the deamination reaction. Geometries of the reactants, transition states, intermediates, and products were fully optimized at the B3LYP/6-31G(d,p) level in the gas phase as this level of theory has been found to agree very well with G3 theories. Activation energies, enthalpies, and Gibbs energies of activation along with the thermodynamic properties (ΔE, ΔH, and ΔG) of each reaction were calculated. A plot of the Gibbs energies of activation (ΔG) for C5 substituted Cyt and H2Cyt against the Hammett σ-constants reveal a good linear relationship. In general, both EDG and EWG substituents at the C5 position in Cyt results in higher ΔG and lower σ values compared to those of H2Cyt deamination reactions. C5 alkyl substituents ( H,  CH3,  CH2CH3,  CH2CH2CH3) increase ΔG values for Cyt, while the same substituents decrease ΔG values for H2Cyt which is likely due to steric effects. However, the Hammett σ-constants were found to decrease at the C5 position of cytosine (Cyt) and saturated cytosine (H2Cyt) on the deamination reaction. Both ΔG and σ values decrease for the substituents Cl and Br in the Cyt reaction, while ΔG values increase and σ decrease in the H2Cyt reaction. This may be due to high polarizability of bromine which results in a greater stabilization of the transition state in the case of bromine compared to chlorine. Regardless of the substituent at C5, the positive charge on C4 is greater in the TS compared to the reactant complex for both the Cyt and H2Cyt. Moreover, as the charges on C4 in the TS increase compared to reactant, ΔG also increase for the C5 alkyl substituents ( H,  CH3,  CH2CH3,  CH2CH2CH3) in Cyt, while ΔG decrease in H2Cyt. In addition, analysis of the frontier MO energies for the transition state structures shows that there is a correlation between the energy of the HOMO–LUMO gap and activation energies.  相似文献   

6.
《Analytical letters》2012,45(3):444-455
Abstract

A simple, accurate and rapid colorimetric method using ninhydrin reagent was developed for the determination of polyamidoamine (PAMAM) dendrimers (G4, G5, and G6) and their derivates in aqueous medium. This method was based on the interaction of the primary amino group of PAMAM dendrimers with ninhydrin reagent to form a blue‐colored product with λmax at 570 nm. Beer's law was obeyed in the concentration range of 25–200 µg/ml of all the three investigated PAMAM dendrimers. The effects of experimental parameters such as reagent concentration and reaction time were studied to optimize the colorimetric method. Accuracy and precision of the colorimetric method were assessed by statistical analysis. Acetylated G5 PAMAM dendrimers with various acetylated rates were simultaneously measured by the described ninhydrin assay and NMR studies and the data obtained by the two methods approximately accorded with each other. Results showed that the suggested procedures were suitable for the determination of PAMAM dendrimers and their derivates in aqueous solutions with satisfactory accuracy and precision.  相似文献   

7.
Solid-phase synthetic templates for Au nanoparticles were developed using Merrifield resins and polyamidoamine (PAMAM) dendrimers. This synthetic scheme affords the opportunity to prepare metal nanoparticles in the absence of air and water, and it does not necessitate phase transfer agents that can be difficult to remove in subsequent steps. Amine-terminated generation 5 PAMAM (G5NH2) dendrimers were grafted to anhydride functionalized polystyrene resin beads and alkylated with 1,2-epoxydodecane to produce G5C12anch. The anchored dendrimers bound both CoII and AuIII salts from toluene solutions at ratios comparable to those of solution phase alkyl-terminated PAMAM dendrimers. The encapsulated AuIII salts could be reduced with NaBH4 to produce anchored dendrimer encapsulated nanoparticles (DENs). Treatment of the anchored DENs with decanethiol in toluene extracted the Au nanoparticles from the dendrimers as monolayer protected clusters (MPCs). After a brief NaCN etch, the anchored dendrimers were readily recycled and a subsequent synthesis of decanethiol Au MPCs was performed with comparable MPC yield and particle size distribution.  相似文献   

8.
Two new Fe3O4 microspheres‐supported semi‐homogeneous catalysts, namely Fe3O4‐G4‐polyaminoamido (PAMAM) dendrimers‐Pd(0) and Fe3O4‐polyethylene glycols (PEGs)‐Pd(0) were synthesized and characterized by X‐ray powder diffraction, infrared spectrum, scanning electron microscopy, transmission electron microscopy, X‐ray photoelectron spectroscopy and thermal gravimetric analysis, which can catalyze Suzuki coupling reactions. The performance of catalysts was tested for the reactions of aryl halides with phenyl boronic acid and compared with a heterogeneous catalyst Fe3O4‐(3‐aminopropyl)triethoxysilane (APTS)‐Pd(0), in which Fe3O4‐G4‐PAMAM dendrimers‐Pd(0) shows the best activity among the three catalysts. The order of the catalytic activities is Fe3O4‐G4‐PAMAM dendrimers‐Pd(0)>Fe3O4‐PEGs‐Pd(0)>Fe3O4‐APTS‐Pd(0). The catalysts can be quickly and completely recovered by simply applying a magnet of 105 mT and the efficiencies remain unaltered even after four recycles.  相似文献   

9.
Polyamidoamine (PAMAM) dendrimers of different generations (G2 and G4) conjugated with β-cyclodextrin (β-CD), PAMAM (G2, G4)-CD, were synthesized using substitution reaction from mono-6-iodine-β-cyclodextrin and PAMAM dendrimers. The resulting molecular structures were characterized by NMR, IR. The molecular interaction between various dendrimers and levofloxacin lactate (LFL) were investigated by monitoring the fluorescence of LFL in the presence of dendrimers in buffer solution (pH 7.4) at 25?°C. It was found that the PAMAM (G2, G4)-CD possesses higher sensitizing ability than that of the corresponding parent dendrimers and natural β-CD, and increases concomitantly with the increases of generation and content of β-CD, suggesting that the PAMAM (G2, G4)-CD possesses stronger inclusion ability with LFL. The possible interaction mechanism between PAMAM-CD and LFL was proposed by 1H NMR analysis and theoretical calculation. The results show that the LFL molecule is located at the amine end of dendrimer molecule and along the side of cyclodextrin cavities to form supramolecular complexes. Furthermore, results indicate that the main driving force of the complex could be attributed to the electrostatic interactions and hydrogen bonding between LFL and PAMAM-CD, as well as the synergistic effect of intermolecular forces.  相似文献   

10.
Aqueous solution diffusion coefficients for G0–G3 PAMAM dendrimers were determined from DOSY-NMR spectroscopy at high and neutral pH. The study was performed in a dilute regime and diffusion coefficients at infinite dilution (D 0) were estimated from the variation of diffusion coefficients with dendrimer concentration. Hydrodynamic radii (R h) for each dendrimer were estimated from D 0 using the Stoke–Einstein relationship at both pH. According to D 0 and R h values, the structure of G0–G1 PAMAM dendrimers is almost insensitive to pH variations, whereas G2–G3 PAMAM dendrimers undergo swelling at neutral pH, due to surface amino groups protonation. Experimental diffusion coefficients show a scaling trend with the number of dendrimer atoms (N), with scaling laws of the type D0 μ Na D_{0} \propto N^{\alpha } , where α takes values of −0.39 and −0.50 at pH 12 and 7, respectively. For the first time, experimental data accounts for the scaling behavior of aqueous diffusion coefficients for low generation PAMAM dendrimers, as previously reported from molecular dynamics simulations.  相似文献   

11.
A series of thermally polymerizable dendrimers of various generations, equipped with triphenylamine (TPA) and benzoxazine (BZ) groups, is synthesized through facile one‐pot Mannich condensations of N 1,N1‐bis(4‐aminophenyl)benzene‐1,4‐diamine (TPA–3NH2, as the core group), 4‐(bis(4‐aminophenyl)amino)phenol (TPA–2NH2–OH, as the AB2 branching group), and CH2O in 1,4‐dioxane. The ratios of the integrated areas in the 1H nuclear magnetic resonance spectra of these dendrimers are consistent with the theoretical numbers of protons, suggesting their successful syntheses. Bathochromic shifts of signals are evident in the UV–vis and photoluminescence spectra upon increasing the generation of the TPA–BZ dendrimers, consistent with an increase in the effective conjugation length. The TPA–BZ dendrimers are able to undergo thermal polymerization and display unique optical physical properties, resulting in thermoset TPA networks after thermal ring‐opening polymerization.  相似文献   

12.
A three‐phase hollow fiber liquid‐phase microextraction method coupled with CE was developed and used for the determination of partition coefficients and analysis of selected nitrophenols in water samples. The selected nitrophenols were extracted from 14 mL of aqueous solution (donor solution) with the pH adjusted to pH 3 into an organic phase (1‐octanol) immobilized in the pores of the hollow fiber and finally backextracted into 40.0 μL of the acceptor phase (NaOH) at pH 12.0 located inside the lumen of the hollow fiber. The extractions were carried out under the following optimum conditions: donor solution, 0.05 M H3PO4, pH 3.0; organic solvent, 1‐octanol; acceptor solution, 40 μL of 0.1 M NaOH, pH 12.0; agitation rate, 1050 rpm; extraction time, 15 min. Under optimized conditions, the calibration curves for the analytes were linear in the range of 0.05–0.30 mg/L with r2>0.9900 and LODs were in the range of 0.01–0.04 mg/L with RSDs of 1.25–2.32%. Excellent enrichment factors of up to 398‐folds were obtained. It was found that the partition coefficient (Ka/d) values were high for 2‐nitrophenol, 3‐nitrophenol, 4‐nitrophenol, 2,4‐dinitrophenol and 2,6‐dinitrophenol and that the individual partition coefficients (Korg/d and Ka/org) promoted efficient simultaneous extraction from the donor through the organic phase and further into the acceptor phase. The developed method was successfully applied for the analysis of water samples.  相似文献   

13.
Two series of uracil‐functionalized dendritic macromolecules based on poly (amidoamine) PAMAM and 2,2‐bis(hydroxymethylpropionic acid) bis‐MPA backbones were prepared and their photoinduced (2π+2π) cycloaddition reactions upon exposure to UV light at 257 nm examined. Dendrimers up to 4th generation were synthesized and investigated as potential materials for high capacity optical data storage with their dimerization efficiency compared to uracil as a reference compound. This allows the impact of increasing the generation number of the dendrimers, both the number of chromophores, as well as the different steric environments, on the performance of each series of dendrimers to be investigated. The (uracil)12‐[G‐2]‐bis‐MPA and (uracil)8‐[G‐1]‐PAMAM were observed to have high dimerization efficiency in solution with different behavior being observed for the PAMAM and bis‐MPA dendrimers. The dendrimers with the best dimerization efficiency in solution were then examined in the solid state as thin films cast on quartz plates, and their film qualities along with their photodimerization performance studied. High quality films with a transmission response of up to 70% in 55 s. when irradiated at 257 nm with an intensity of 70 mW/cm2 could be obtained suggesting future use as recording media for optical data storage. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4401–4412, 2007  相似文献   

14.
The conductivity (κ), turbidity (τ), NMR, and Krafft temperature (T K) studies have been carried out for hexadecylpyridinium bromide (HPyBr), hexadecylpyridinium chloride (HPyCl), and hexadecyltrimethylammonium bromide (HTAB) in the presence of 3G, 3.5G, 4G, and 4.5G generations of poly(amido amine) dendrimers (PAMAM) in aqueous phase. The cmc of all present surfactants were evaluated from κ and τ measurements, both in the presence as well as in the absence of PAMAM. The cmc values decrease in the presence of PAMAM in comparison to that in pure water, especially in the presence of amine terminated PAMAM. Krafft temperature values of pure surfactants also decrease in the presence of various generations of PAMAM. A comparison of all present results from different techniques indicates that HPyBr interacts more strongly with all generations of PAMAM rather than HPyCl and HTAB.  相似文献   

15.
The reaction of 4,4′‐bipyridine with copper acetate in the presence of 4‐nitrophenol led to the formation of the title compound, {[Cu(CH3COO)2(C10H8N2)]·C6H5NO3·2H2O}n. The complex forms a double‐stranded ladder‐like coordination polymer extending along the b axis. The double‐stranded polymers are separated by 4‐nitrophenol and water solvent molecules. The two CuII centres of the centrosymmetric Cu2O2 ladder rungs have square‐pyramidal coordination environments, which are formed by two acetate O atoms and two 4,4′‐bipyridine N atoms in the basal plane and another acetate O atom at the apex. The ladder‐like double strands are separated from each other by one unit‐cell length along the c axis, and are connected by the water and 4‐nitrophenol molecules through a series of O—H...O and C—H...O hydrogen‐bonding interactions and two unique intermolecular π–π interactions.  相似文献   

16.
The effect of PAMAM dendrimers (generations G3, G4 and G5) on the fibrillation of α‐synuclein was examined by fluorescence and CD spectroscopy, TEM and SANS. PAMAM dendrimers inhibited fibrillation of α‐synuclein and this effect increased both with generation number and PAMAM concentration. SANS showed structural changes in the formed aggregates of α‐synuclein – from cylindrical to dense three‐dimensional ones – as the PAMAM concentration increased, on account of the inhibitory effect. PAMAM also effectively promoted the breaking down of pre‐existing fibrils of α‐synuclein. In both processes – that is, inhibition and disassociation of fibrils – PAMAM redirected α‐synuclein to an amorphous aggregation pathway.

  相似文献   


17.
A divergent approach was used for the synthesis of dendritic structures based on a cyclotriphosphazene core with 12 or 24 hydroxyl groups, by starting from [N3P3(OC6H4OH‐4)6] and using an acetal‐protected 2,2‐di(hydroxymethyl)propionic anhydride as the acylating agent. Hydroxyl groups in these first‐ and second‐generation dendrimers, G1‐(OH)12 or G2‐(OH)24 , were then condensed in turn with mono‐ or polycatenar pro‐mesogenic acids to study their ability to promote self‐assembly into liquid crystalline structures. Reactions were monitored by using 31P{1H} and 1H NMR spectroscopy and the chemical structure of the resulting materials was confirmed by using different spectroscopic techniques and mass spectrometry (MALDI‐TOF MS). The results were in accordance with monodisperse, fully functionalised cyclotriphosphazene dendrimers. Thermal and liquid crystalline properties were studied by using optical microscopy, differential scanning calorimetry and X‐ray diffraction. The dendrimer with 12 4‐pentylbiphenyl mesogenic units gives rise to columnar rectangular organisation, whereas the one with 24 pentylbiphenyl units does not exhibit mesomorphic behaviour. In the case of materials that contain polycatenar pro‐mesogenic units with two aromatic rings ( A4 vs. A5 ), the incorporation of a short flexible spacer connected to the periphery of the dendron (acid A5 ) was needed to achieve mesomorphic organisation. In this case, both dendrimer generations G1 A5 and G2 A5 exhibit a hexagonal columnar mesophase.  相似文献   

18.
The title compund, [Cu2(OH)2(C22H25N3)2](ClO4)2, is a copper(II) dimer, with two [CuL]2+ units [L is bis(6‐methyl‐2‐pyridylmethyl)(2‐phenylethyl)amine] bridged by hydroxide groups to define the {[CuL](μ‐OH)2[CuL]}2+ cation. Charge balance is provided by perchlorate counter‐anions. The cation has a crystallographic inversion centre halfway between the CuII ions, which are separated by 3.0161 (8) Å. The central core of the cation is an almost regular Cu2O2 parallelogram of sides 1.931 (2) and 1.935 (2) Å, with a Cu—O—Cu angle of 102.55 (11)°. The coordination geometry around each CuII centre can be best described as a square‐based pyramid, with three N atoms from L ligands and two hydroxide O atoms completing the coordination environment. Each cationic unit is hydrogen bonded to two perchlorate anions by means of hydroxide–perchlorate O—H...O interactions.  相似文献   

19.
Summary: Generation‐4 poly(amidoamine) dendrimers (G4‐PAMAM) were cross‐linked using gluteraldehyde to obtain aldehyde‐activated G4‐PAMAM and cross‐linked G4‐PAMAM, termed pre‐megamers, which were grafted with octadecylamine (ODA) in chloroform (CHCl3). Statistical megamer morphologies and particles were prepared by an emulsification solvent‐evaporation method using an ODA‐premegamer/CHCl3 solution, surfactant, and water. Physicochemical characterization of the premegamers and megamers by various spectroscopic and microscopic techniques demonstrated their formation and properties useful in diagnostic and chromatographic applications.

Formation of pre‐megamers and megamers and their transmission electron microscopy images.  相似文献   


20.
In the search for photocatalysts that can directly utilize near‐IR (NIR) light, we investigated three oxides Cu3(OH)4SO4 (antlerite), Cu4(OH)6SO4, and Cu2(OH)3Cl by photodecomposing 2,4‐dichlorophenol over them under NIR irradiation and by comparing their electronic structures with that of the known NIR photocatalyst Cu2(OH)PO4. Both Cu3(OH)4SO4 and Cu4(OH)6SO4 are NIR photocatalysts, but Cu2(OH)3Cl is not. Thus, in addition to the presence of two different CuOm and Cu′On polyhedra linked with Cu?O?Cu′ bridges, the presence of acceptor groups (e.g., SO4, PO4) linked to the metal oxygen polyhedra is necessary for NIR photocatalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号