共查询到20条相似文献,搜索用时 15 毫秒
1.
Guy J. Clarkson M. ngeles Farrn Rosa M. Claramunt Ibon Alkorta Jos Elguero 《Acta Crystallographica. Section C, Structural Chemistry》2019,75(3):271-276
The molecular structure of the anti‐aging agent J147 [systematic name: (E)‐N‐(2,4‐dimethylphenyl)‐2,2,2‐trifluoro‐N′‐(3‐methoxybenzylidene)acetohydrazide], C18H17F3N2O2, has been determined at 150 K. The crystal structure corresponds to the minimum‐energy conformation in the gas phase calculated by density functional theory (DFT). 15 other conformations have been calculated and compared with the minimum, denoted 1111 . NMR spectroscopic data have been obtained and compared with those from Gauge Independent Atomic Orbital (GIAO) calculations. DFT calculations allow the reduction of the 16 possible rotamers to the four most stable (i.e. 1111 , 1112 , 1121 and 1222 ); in addition, the calculated barriers connecting these minima are low enough to permit their interconversion. Comparison of the NMR spectroscopic results, both experimental and calculated, point to the 1121 isomer being present in chloroform solution. 相似文献
2.
Manashjyoti Konwar Roktopol Hazarika Abdul A. Ali Mitali Chetia Nageshwar D. Khupse Prakash J. Saikia Diganta Sarma 《应用有机金属化学》2018,32(8)
A novel and highly efficient method for the synthesis of 1,4‐disubstituted‐1H‐1,2,3‐triazoles by copper‐catalyzed azide‐alkyne cycloaddition has been developed. This economic and sustainable protocol uses a readily available Benedict's solution/Vitamin C catalyst system affording a wide range of 1,4‐disubstituted‐1H‐1,2,3‐triazoles under mild conditions. 相似文献
3.
An efficient route for the synthesis of (?)‐physostigmine analogs 1a – 1g and 2a – 2k is described. Analogs 1a – 1g were synthesized via copper(I)‐catalyzed cycloaddition between the optically pure azide 10 and a variety of alkynes. Similarly, analogs 2a – 2k were prepared through ‘three‐component Huisgen cycloaddition’ using various amines, propargyl bromine, and 10 in H2O. Facile preparation of 10 via MacMillan's organocatalysis has made it possible to generate a great diversity of natural product‐like compounds that can be screened for anti‐Alzheimer's effects. 相似文献
4.
Daniel E. Vicentes Andrea L. Romero Ricuarte Rodríguez Justo Cobo Christopher Glidewell 《Acta Crystallographica. Section C, Structural Chemistry》2020,76(5):446-453
An efficient synthesis of 1‐arylisochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐ones, involving the diazotization of 3‐amino‐4‐arylamino‐1H‐isochromen‐1‐ones in weakly acidic solution, has been developed and the spectroscopic characterization and crystal structures of four examples are reported. The molecules of 1‐phenylisochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐one, C15H9N3O2, (I), are linked into sheets by a combination of C—H…N and C—H…O hydrogen bonds, while the structures of 1‐(2‐methylphenyl)isochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐one, C16H11N3O2, (II), and 1‐(3‐chlorophenyl)isochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐one, C15H8ClN3O2, (III), each contain just one hydrogen bond which links the molecules into simple chains, which are further linked into sheets by π‐stacking interactions in (II) but not in (III). In the structure of 1‐(4‐chlorophenyl)isochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐one, (IV), isomeric with (III), a combination of C—H…O and C—H…π(arene) hydrogen bonds links the molecules into sheets. When compound (II) was exposed to a strong acid in methanol, quantitative conversion occurred to give the ring‐opened transesterification product methyl 2‐[4‐hydroxy‐1‐(2‐methylphenyl)‐1H‐1,2,3‐triazol‐5‐yl]benzoate, C17H15N3O3, (V), where the molecules are linked by paired O—H…O hydrogen bonds to form centrosymmetric dimers. 相似文献
5.
Rafael E. Rodríguez‐Lugo Neudo Urdaneta Bruno Pribanic Vanessa R. Landaeta 《Acta Crystallographica. Section C, Structural Chemistry》2015,71(9):783-787
Orange rectangular blocks suitable for X‐ray diffraction analysis were obtained for the previously reported [Ahmad & Bano (2011). Int. J. ChemTech Res. 3 , 1470–1478] title chalcone, C15H14ClNOS. This solid‐emissive chalcone exhibits a planar structure and the bond parameters are compared with related compounds already described in the literature. The determination of the structure of this chalcone is quite relevant because it will play an important role in theoretical calculations to investigate potential two‐photon absorption processes and could also be useful for studying the interaction of such compounds with a biological target. 相似文献
6.
Hydrated alkaline earth metal salts of 5‐amino‐1H‐tetrazole ( B ) were synthesized by reaction of B with a suitable metal hydroxide in water. All compounds were fully characterized by analytical (elemental analysis and mass spectrometry) and spectroscopic (IR, Raman, 1H and 13C NMR) methods. Additionally, the crystal structures of the magnesium [ 1· 4H2O: triclinic, P$\bar {1}$ , a = 5.940(1) Å, b = 7.326(1) Å,c = 7.383(1) Å, α = 106.10(1)°, β = 106.51(1)°, γ = 111.85(1)°, V = 258.0(1) Å3], calcium [ 2· 6H2O: monoclinic, P21/m, a = 6.904(1) Å,b = 6.828(1) Å, c = 10.952(2) Å, β = 94.50(2)°, V = 514.6(1) Å3], and strontium [ 3· 6H2O: orthorhombic, Cmcm, a = 6.987(1) Å, b = 28.394(2) Å, c = 7.007(1) Å, V = 1390.3(2) Å3] were determined by low temperature X‐ray diffraction. Additionally, the (gas phase) structure of the 5‐amino‐1H‐tetrazole anion ([ B ]–) was also studied by natural bond orbital (NBO) analysis [B3LYP/6‐31+G(d,p)]. Lastly, standard tests were used to determine the sensitivity towards impact, friction, and electrostatic discharge of the compounds and the thermal stability was assessed by differential scanning calorimetry (DSC) analysis. 相似文献
7.
Hanİfe Saraçoğlu Alaaddin Cukurovali 《International journal of quantum chemistry》2012,112(6):1566-1578
The title molecule, 3‐{[4‐(3‐methyl‐3‐phenyl‐cyclobutyl)‐thiazol‐2‐yl]‐hydrazono}‐1,3‐dihydro‐indol‐2‐one (C22H20N4O1S1), was prepared and characterized by 1H NMR, 13C NMR, IR, UV–visible, and single‐crystal X‐ray diffraction. The compound crystallizes in the monoclinic space group P21 with a = 8.3401(5), b = 5.6976(3), c = 20.8155(14) Å, and β = 95.144(5)°. Molecular geometry from X‐ray experiment and vibrational frequencies of the title compound in the ground state has been calculated using the Hartree–Fock with 6‐31G(d, p) and density functional method (B3LYP) with 6‐31G(d, p) and 6‐311G(d, p) basis sets, and compared with the experimental data. The calculated results show that optimized geometries can well reproduce the crystal structural parameters, and the theoretical vibrational frequencies values show good agreement with experimental data. Density functional theory calculations of the title compound and thermodynamic properties were performed at B3LYP/6‐31G(d, p) level of theory. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012 相似文献
8.
《中国化学会会志》2018,65(8):932-939
1‐(3‐amino‐4‐thia‐1,2‐diazaspiro[4.11]hexadec‐2‐en‐1‐yl)ethan‐1‐one was synthesized and experimentally characterized by using FT‐IR, 1H NMR, 13C NMR, and UV–Vis spectroscopy. The structure of the compound was confirmed by single‐crystal X‐ray diffraction. In the crystal structure, the molecules are linked by pairs of N‐H⋯N hydrogen bonds, forming centrosymmetric dimers with the graph‐set motif. The water molecule also plays an important role in the stabilization of the crystal structure, bridging the dimers to form a two‐dimensional supramolecular network. The molecular geometry, frontier molecular orbitals, vibrational frequencies, electronic properties, and molecular electrostatic potential were calculated using density functional theory (DFT) with the B3LYP/6‐311G(d,p) basis set. Geometric parameters, vibrational assignments, and electronic properties such as calculated energies, excitation energies, and oscillator strengths were compared with the experimental data, and it was seen that the theoretical results support the experimental parameters. 相似文献
9.
Copper@PMO nanocomposites as a novel reusable heterogeneous catalyst for microwave‐assisted green synthesis of β‐hydroxy‐1,2,3‐triazoles through experimental design protocol 下载免费PDF全文
A microwave‐assisted multicomponent reaction was used to prepare a series of β‐hydroxy‐1,2,3‐triazoles in the presence of copper@PMO nanocomposites as a catalyst. Box–Behnken design and response surface methodology were used to optimize the influencing parameters such as catalyst content, reaction time and microwave power, being an economical way of obtaining the optimal reaction conditions based on restricted number of experiments. Aqueous reaction medium, easy recovery of catalyst, efficient recycling and high stability of the catalyst render the protocol sustainable and economic. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
10.
《Acta Crystallographica. Section C, Structural Chemistry》2017,73(8):609-612
The title Schiff base compound {systematic name: 2‐[5‐[(E )‐(2‐hydroxybenzylidene)amino]‐4‐(2‐{5‐[(E )‐(2‐hydroxybenzylidene)amino]‐2‐(2‐hydroxyphenyl)‐1,3‐thiazol‐4‐yl}disulfanyl)‐1,3‐thiazol‐2‐yl]phenol}, C32H22N4O4S4, incorporating a disulfanediyl (dithio) linkage, was obtained from the condensation reaction between two equivalents of salicylaldehyde and one equivalent of dithiooxamide in dimethylformamide, and was characterized by elemental analysis, IR spectroscopic analysis and single‐crystal X‐ray diffraction. A one‐dimensional chain is formed along the b axis via double intermolecular C—H…S hydrogen bonds. The HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energies and some related molecular parameters were calculated at the B3LYP/6‐311G(d,p) level of theory. The molecular hyperpolarizability was also calculated. 相似文献
11.
Experimental and Theoretical Studies of 4‐(1‐benzyl‐5‐methyl‐1H‐1,2,3‐triazol‐4‐yl)‐6‐(2,4‐dichlorophenyl)pyrimidin‐2‐amine: A Potential Antibacterial Agent 下载免费PDF全文
S. Murugavel R. Madhanraj D. K. Andrew Prasanna Kumar Sangaraiah Nagarajan Alagusundaram Ponnuswamy 《中国化学会会志》2015,62(11):974-983
The title compound ( 1 ), 4‐(1‐benzyl‐5‐methyl‐1H‐1,2,3‐triazol‐4‐yl)‐6‐(2,4‐dichlorophenyl)pyrimidin‐2‐amine (C20H16Cl2N6), was synthesized and structurally characterized by elemental analysis, 1H NMR and 13C NMR and single crystal X‐ray diffraction. The compound crystallizes as a colourless needle shaped in the triclinic system, space group P‐1 with cell constants: a = 10.7557(11) Å, b = 12.7078(17) Å, c = 15.511(2) Å, α = 68.029(4)0, β = 86.637(5)0, γ = 87.869(4)0; V = 1962.4 (4) Å3, Z = 4. There are two structurally similar but crystallographically independent molecules (A and B) in the asymmetric unit of the title compound, which is linked via N‐H…Cl hydrogen bond. An intramolecular C‐H…N hydrogen also occurs in each molecule. In the crystal, each of independent molecules forms a centrosymmetric dimer with an R22(8) ring motifs through a pair of N‐H…N hydrogen bonds. These dimers are further connected by intermolecular N‐H…Cl and C‐H…Cl hydrogen bonds, forming an infinite two dimensional supramolecular network lying parallel to the [010] plane. The molecular geometry was also optimized using density functional theory (DFT/B3LYP) method with the 6‐311G (d, p) basis set and compared with the experimental data. Mulliken population analyses on atomic charges, HOMO‐LUMO energy levels, Molecular electrostatic potential and chemical reactivity of the title compound were investigated by theoretical calculations. The thermo dynamical properties of the title compound at different temperature have been calculated and corresponding relations between the properties and temperature have also been obtained. The in vitro antibacterial activity has been screened against Gram‐positive (Bacillus cerus and Staphylococcus epidermidis) and Gram‐Negative (Escherichia coli, Acinetobacter baumannii and Proteus vulgaris). The results revealed that the compound exhibited good to moderate antibacterial activity. 相似文献
12.
《应用有机金属化学》2017,31(8)
Nano‐Fe3O4@Cellulose‐NH2‐CuI as a novel magnetically separable composite was prepared and fully characterized using various techniques including Fourier transform infrared, X‐ray photoelectron and energy‐dispersive X‐ray spectroscopies, X‐ray diffraction, field‐emission scanning and transmission electron microscopies, thermogravimetric analysis and vibrating sample magnetometry. To obtain an appropriate structure and also to describe to some extent the different kinds of metal–ligand interactions present in the nano‐Fe3O4@Cellulose‐NH2‐CuI composite, covalent and electrostatic interactions, density functional theory model chemistry and quantum theory of atoms in molecules method were employed, respectively. This cellulose‐based heterogeneous catalyst can effectively promote the one‐pot three‐component reaction of a variety of terminal alkynes bearing substituted phenyls or propargylic alcohol together with substituted benzyl halides and sodium azide, so‐called click reaction, in water to afford the corresponding 1,4‐disubstituted 1,2,3‐triazoles with improved yields and regioselectivity. The magnetic catalyst was conventionally recovered using an external magnet and reused in at least four successive runs under the optimal reaction conditions, without appreciable loss of its activity. 相似文献
13.
In order to search for novel agrochemicals with high activity and low toxicity, a series of phosphonate derivatives containing 1,2,3-triazole and thiazole rings were designed and synthesized using 2-chloro-5-(chloromethyl)- thiazole as the starting material. Their structures were confirmed by IR, ^1H NMR, ^31p NMR, EI-MS or ESI-MS and elemental analyses. The crystal structure of 7a was determined by single crystal X-ray diffraction. Preliminary bioassays indicated that most of the target compounds did not display insecticidal activities, but a fraction of them possessed herbicidal and fungicidal activities to some extent. 相似文献
14.
Molecular insight into the interaction mechanisms of amino‐2H‐imidazole derivatives with BACE1 protease: A QM/MM and QTAIM study 下载免费PDF全文
Esteban Gabriel Vega‐Hissi Rodrigo Tosso Ricardo Daniel Enriz Lucas Joel Gutierrez 《International journal of quantum chemistry》2015,115(6):389-397
In this study, we described quantitatively the interactions between two new amino‐2H‐imidazole inhibitors ((R)‐1t and (S)‐1m) and BACE1 using a hybrid quantum mechanics‐molecular mechanical (QM/MM) method together with a quantum theory of atoms In Molecules (QTAIM) analysis. Our computational calculations revealed that the binding affinity of these compounds is mostly related to the amino‐2H‐imidazole core, which interact tightly with the aspartate dyad of the active site. The interactions were stronger when the inhibitors presented a bulky substituent with a hydrogen bond acceptor motif pointing toward Trp76, such as the 3,5‐dimethyl‐4‐methoxyphenyl group of compound (S)‐1m. Furthermore, the QTAIM analysis revealed that many hydrophobic interactions complement cooperatively the hydrogen bond which is not present when compound (R)‐1t is bound to the enzyme. The combined QM/MM‐QTAIM analysis allows identifying the interactions that account for the activity difference between compounds, even at a nanomolar range. 相似文献
15.
16.
Mehdi Adib MohammadHosein Sayahi Niusha Mahmoodi HamidReza Bijanzadeh 《Helvetica chimica acta》2006,89(6):1176-1180
The reactive 1 : 1 zwitterionic intermediate formed by the addition of isocyanides to dialkyl acetylenedicarboxylates was trapped with 4‐arylurazoles to produce the highly functionalized pyrazolo[1,2‐a][1,2,4]triazoles 5 in good yields (Table). The structures of the products 5a – h were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR), by EI‐MS, and elemental analysis. A possible mechanism for this reaction is proposed (Scheme). 相似文献
17.
Vyacheslav S. Grinev Elena I. Linkova Mikhail N. Krainov Maksim V. Dmitriev Alevtina Yu. Yegorova 《Acta Crystallographica. Section C, Structural Chemistry》2020,76(5):483-489
The crystal structures and packing features of two homologous Meyer's bicyclic lactams with fused pyrrolidone and medium‐sized perhydropyrimidine rings, namely, 8a‐phenyl‐2,3,4,7,8,8a‐hexahydropyrrolo[1,2‐a]pyrimidin‐6(1H)‐one, C13H16N2O ( 1 ), and 8a‐(4‐methylphenyl)‐2,3,4,7,8,8a‐hexahydropyrrolo[1,2‐a]pyrimidin‐6(1H)‐one, C14H18N2O ( 2 ), were elucidated, and Hirshfeld surface plots were calculated and drawn for visualization and a deeper analysis of the intermolecular noncovalent interactions. Molecules of 1 and 2 are weakly linked by intermolecular C=O…H—N hydrogen bonds into chains, which are in turn weakly linked by other C=O…H—Car interactions. The steric volume of the substituent significantly affects the crystal packing pattern. 相似文献
18.
The crystal structure of the title bifunctional silicon‐bridged compound, C35H31NSi, (I), has been determined. The compound crystallizes in the centrosymmetric space group P21/c. In the crystal structure, the pairs of aryl rings in the two different chromophores, i.e. 9‐phenyl‐9H‐carbazole and 9,9‐dimethyl‐9H‐fluorene, are positioned orthogonally. In the crystal packing, no classical hydrogen bonding is observed. UV–Vis absorption and fluorescence emission spectra show that the central Si atom successfully breaks the electronic conjugation between the two different chromophores, and this was further analysed by density functional theory (DFT) calculations. 相似文献
19.
《Acta Crystallographica. Section C, Structural Chemistry》2018,74(7):847-855
In the crystal structure of O,O′‐diethyl N‐(2,4,6‐trimethylphenyl)thiophosphate, C13H22NO2PS, two symmetrically independent thiophosphoramide molecules are linked through N—H…S and N—H…π hydrogen bonds to form a noncentrosymmetric dimer, with Z′ = 2. The strengths of the hydrogen bonds were evaluated using density functional theory (DFT) at the M06‐2X level within the 6‐311++G(d,p) basis set, and by considering the quantum theory of atoms in molecules (QTAIM). It was found that the N—H…S hydrogen bond is slightly stronger than the N—H…π hydrogen bond. This is reflected in differences between the calculated N—H stretching frequencies of the isolated molecules and the frequencies of the same N—H units involved in the different hydrogen bonds of the hydrogen‐bonded dimer. For these hydrogen bonds, the corresponding charge transfers, i.e. lp (or π)→σ*, were studied, according to the second‐order perturbation theory in natural bond orbital (NBO) methodology. Hirshfeld surface analysis was applied for a detailed investigation of all the contacts participating in the crystal packing. 相似文献
20.
《Acta Crystallographica. Section C, Structural Chemistry》2017,73(8):645-651
Careful choice of the organic ligands is one of the most important parameters in the rational design and synthesis of coordination polymers. Aromatic polycarboxylates have been widely used in the preparation of metal–organic polymers since they can utilize various coordination modes to form diverse structures and can act as hydrogen‐bond acceptors and donors in the assembly of supramolecular structures. Nitrogen‐heterocyclic organic compounds have also been used extensively as ligands for the construction of polymers with interesting structures. In the polymers catena‐poly[[[diaquabis{2‐[(1H‐imidazol‐1‐yl)methyl]‐6‐methyl‐1H‐benzimidazole‐κN 3}cobalt(II)]‐μ2‐benzene‐1,4‐dicarboxylato‐κ2O 1:O 4] dihydrate], {[Co(C8H4O4)(C12H11N4)2(H2O)2]·2H2O}n , (I), and catena‐poly[[[diaquabis{2‐[(1H‐imidazol‐1‐yl)methyl]‐6‐methyl‐1H‐benzimidazole‐κN 3}nickel(II)]‐μ2‐benzene‐1,4‐dicarboxylato‐κ2O 1:O 4] dihydrate], {[Ni(C8H4O4)(C12H11N4)2(H2O)2]·2H2O}n , (II), the CoII or NiII ion lies on an inversion centre and exhibits a slightly distorted octahedral coordination geometry, coordinated by two N atoms from two imidazole rings and four O atoms from two monodentate carboxylate groups and two water molecules. The dicarboxylate ligands bridge metal ions forming a polymeric chain. The 2‐[(1H‐imidazol‐1‐yl)methyl]‐6‐methyl‐1H‐benzimidazole ligands coordinate to the CoII or NiII centres in monodentate modes through an imidazole N atom and are pendant on opposite sides of the main chain. The two structures are isomorphous. In the crystal, the one‐dimensional chains are further connected through O—H…O, O—H…N and N—H…O hydrogen bonds, leading to a three‐dimensional supramolecular architecture. In addition, the IR spectroscopic properties, PXRD patterns, thermogravimetric behaviours and fluorescence properties of both polymers have been investigated. 相似文献