首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A global potential energy surface (PES) for the electronic ground state of Li2H system is constructed over a large configuration space. About 30 000 ab initio energy points have been calculated by MRCI‐F12 method with aug‐cc‐pVTZ basis set. The neural network method is applied to fit the PES and the root mean square error of the current PES is only 1.296 meV. The reaction dynamics of the title reaction has been carried out by employing time‐dependent wave packet approach with second order split operator on the new PES. The reaction probability, integral cross section and thermal rate constant are obtained from the dynamics calculation. In most of the collision energy regions, the integral cross sections are in well agreement with the results reported by Gao et al. The rate constant calculated from the new PES increases in the temperature range of present investigation.  相似文献   

2.
A new global potential energy surface for the ground state of MgH2 was constructed using the permutation invariant polynomial neural network method. About 70 000 ab initio energy points were calculated via the multi‐reference configuration interaction method method with aug‐cc‐pVTZ and aug‐cc‐pVQZ basis sets, and these points were used to construct the potential energy surface (PES). To avoid basis set superposition error, the basis set was extrapolated to the complete basis set limit using the two point energy extrapolation formula. The root mean square error of the present PES is only 8.85 meV. Initial state (v = 0, j = 0) dynamics studies were performed using the time‐dependent wave packet method with a second‐order split operator for the total angular momentum J up to a value of 50. Furthermore, the reaction probability, integral cross section, and thermal rate constant are reported and compared with available theoretical studies.  相似文献   

3.
We present accurate quantum dynamic calculations of the reaction C(1D) + HD on the latest version of the potential energy surface [Zhang et al., J. Chem. Phys. 140, 234301 (2014)]. Using a Chebyshev real wave packet method with full Coriolis coupling, we obtain the initial state‐specified ( ) reaction probabilities, integral cross sections, and rate constants. The resulting probabilities display oscillatory structures due to numerous long‐lived resonances supported by the deep potential well. The calculated rate constants and CD/CH product branching ratio at room temperature are in reasonably good agreement with the experimental measurements.  相似文献   

4.
The O(3P)+ reaction has been investigated by employing time‐dependent quantum wave packet with split operator method on potential energy surface of the doublet ground‐state H2O+(12A″). The reaction probabilities and integral cross sections are calculated using centrifugal sudden approximation, which basically agree with the quasi‐classical results of Paniagua et al. [Phys. Chem. Chem. Phys. 2014, 16, 23594]. Moreover, the effect of vibrational and rotational excitation of reactant is investigated. The results show that the vibrational and rotational excitation effects on the integral cross section are not obvious. The little differences between Coriolis coupling results and centrifugal sudden approximation ones show that the cheaper centrifugal sudden calculations here reported are effective for this reaction.  相似文献   

5.
The 2ΠgN and 3Σ?NO? resonances in electron‐N2 and NO collisions have been treated using both nuclear and electronic degrees of freedom and a two‐dimensional (2D) time dependent wave packet approach to ascertain the importance of nonlocality in electron–nuclear interaction. The results so obtained are compared with vibrational excitation cross‐sections obtained experimentally and those from other theoretical/numerical approaches using 1D local complex potential, 2D model with a combination of the exterior complex scaling method and a finite‐element implementation of the discrete‐variable representation. The results obtained provide detailed insight into the nuclear dynamics induced by electron–molecule collision and reveal that while for resonant excitation of lower vibrational modes, the nonlocal effect may not be as critical but importance of nonlocal effects may increase with increase in quanta of resonant vibrational excitation. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Three‐dimensional time‐dependent quantum wave packet calculations have been carried out for Br + H2 on a new global ab initio and a semi‐empirical extended London–Eyring–Polanyi–Sato potential energy surface. It is shown that on the ab initio surface, the threshold energy is much lower, and the reaction probabilities, cross sections, and rate constants are much larger. The effects of the initial rovibrational excitation have also been studied. Comparison of rate constants with experimental measurement implies that the ab initio surface is more suitable for quantum dynamic calculation. The possible reasons and mechanism for the dynamical difference on the two PES are analyzed and discussed. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

7.
Evolution of hydrogen molecule, starting initially from its field‐free ground state, in a time‐dependent (TD) magnetic field of order 1011 G is presented in a parallel internuclear axis and magnetic field‐axis configuration. Effective potential energy curves (EPECs), in terms of exchange and correlation energy, of the hydrogen molecule as a function of TD magnetic‐field strength, are analyzed through TD density functional computations based on a quantum fluid dynamics approach. The numerical computations are performed for internuclear separation R ranging from 0.1 to 14.0 a.u. The EPECs exhibit field‐dependent significant potential‐well minima both at large internuclear separations and at short internuclear separations with a considerable increase in the exchange and correlation energy of the hydrogen molecule. The results, when compared with the time‐independent (TI) studies involving static TI magnetic fields, reveal TD behavior of field‐dependent crossovers between different spin‐states of hydrogen molecule as indicated by the TI investigations in static magnetic fields. Besides this, present work reveals interesting dynamics in the TD total‐electronic charge‐density distribution of the hydrogen molecule. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

8.
The time‐dependent wavepacket method is used to study the reaction dynamics of S(3P) + HD (v = 0, 1, 2) on the adiabatic 13A″ potential energy surface constructed by Han and coworkers [J. Chem. Phys. 2012, 136, 094308]. The reaction probabilities and integral cross sections as a function of collision energy are obtained and discussed. The results calculated by using the CC and the CS approximation have been compared, which suggests that for this direct abstraction reaction, the cheaper CS approximation calculation is valid enough in the quantum calculation. The investigation also shows that the reaction probabilities and integral cross sections tend to increase with collision energy. By analyzing the v‐dependent behavior of the integral cross sections, the significant effect of the vibrational excitation of HD is found. Also found in the calculation is a significant resonance feature in the reaction probabilities versus collision energy. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
10.
We studied the general time‐dependent linear and quadratic system via dynamical symmetries. In an algebraic framework, we obtained exact solutions of the evolution operators, propagators, and wave functions of the general time‐dependent linear and quadratic system. To illustrate our calculations, we discuss a few special cases, including a particle driven by a monochromatic electric field, and cases of oscillatory, linear, or monotonic with respect to the time of the quadratic system. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

11.
The H+ + LiH → Li + H reactive scattering has been studied using a quantum real wave packet method. The state‐to‐state and state‐to‐all reaction probabilities for the entitled collision have been calculated at zero total angular momentum. The probabilities for J > 0 are estimated from the J = 0 results by using J‐shifting approximation based on the Capture model. The integral cross sections and thermal rate constants are then calculated. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

12.
13.
The H + F2 → HF + F reaction on ground state potential energy surface is investigated using the quantum mechanical real wave packet and Flux analysis method based on centrifugal sudden approximation. The initial state selected reaction probabilities for total angular momentum J = 0 have been calculated by both methods while the probabilities for J > 0 have been calculated by Flux analysis method. The initial state selected reaction probabilities, integral cross sections and rate coefficients have been calculated for a broad range of collision energy. The results show a large rotational enhancement of the reaction probability. Some resonances were seen in the state‐to‐state reaction probabilities while state‐to‐all reaction probabilities and the reaction cross section do not manifest any oscillations and the initial state selected reaction rate constants are sensitive to the temperature. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

14.
The geometric and electronic structures of a series of silicon fluorides (n = 4 ? 6) were computationally studied with the aid of density functional theory (DFT) method with B3LYP and M06‐2X functionals and coupled cluster (CCSD and CCSD(T)) methods with 6‐311++G(d,p) basis set. The nature of the Si‐F bonds in these compounds was analyzed in the framework of the natural bond orbital theory and natural resonance theory. Energy characteristics (heats of reactions and energy barriers) of the dissociation reactions → SiF4 + F and → + F were calculated using the DFT and CCSD methods. The potential energy surface of elimination of a fluoride anion from has a specific topology with valley‐ridge inflection points corresponding to bifurcations of the minimal energy reaction path. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
A new approach based upon the Taylor series method is proposed for propagating solutions of the time‐dependent Schrödinger equation. Replacing the spatial derivative of the wave function with finite difference formulas, we derive a recursive formula for the evaluation of Taylor coefficients. The automatic differentiation technique is used to recursively calculate the required Taylor coefficients. We also develop an implicit scheme for the recursive evaluation of these coefficients. We then advance the solution in time using a Taylor series expansion. Excellent computational results are obtained when this method is applied to a one‐dimensional reflectionless potential and a two‐dimensional barrier transmission problem. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

16.
The quantum mechanics (QM) and quasiclassical trajectory (QCT) calculations have been carried out for the title reaction with the ground minimal allowed rotational state of CH (j = 1) on the 1 1A′ potential energy surface. For the reaction probability at total angular momentum J = 0, a similar trend of the QM and QCT calculations is observed, and the QM results are larger than the latter almost in the whole considered energy range (0.1–1.5 eV). The QCT integral cross sections are larger than the QM results with centrifugal sudden approximation, while smaller than those from QM method including Coriolis coupling for collision energies bigger than 0.25 eV. The quantum wave‐packet computations show that the Coriolis coupling effects get more and more pronounced with increasing of J. In addition to the scalar properties, the stereodynamical properties, such as the average rotational alignment factor <P2( j′?k )>, the angular distributions Pr), P(?r), Pr,?r), and the polarization‐dependent generalized differential cross sections have been explored in detail by QCT approach. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
应用量子化学从头计算和密度泛函理论(DFT)对HO2+C2H2反应体系的反应机理进行了研究.在B3LYP/6-311G**和CCSD(T)/6-311G**水平上计算了HO2+ C2H2反应的二重态反应势能面.计算结果表明,主要反应方式为自由基HO2的H原子和C2H2分子中的C原子结合,经过一系列异构化,最后分解得到主要产物P1 (CH2O+ HCO).此反应是放热反应,化学反应热为-321.99 kJ·mol-1.次要产物为P2 (CO2 +CH3),也是放热反应.  相似文献   

18.
Recentprogressinsurfacespectroscopyandmolecularbeamscatteringanddetectiontechniquesmakesitnowpossibleatthemicroscopicleveltoaccuratelymeasuresuchthingsasdissociationrates,adsorbatebindingandgeometry,andmobilitiesofadsorbedspeciesonsurfaces.Thiskindofe…  相似文献   

19.
The structural features of vibrational excitation cross‐sections in resonant e‐H2 scattering have been investigated using a time dependent wave packet approach and a local complex potential to describe the 2Σ H anion. An analysis of the partial contributions to the vibrational excitation cross‐sections reveals that all features of the excitation profile result from simple interference between bound vibrational levels of H2 and H. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

20.
In this article, we apply a novel time‐dependent discrete variable representation (TDDVR) method proposed by Barkakaty and Adhikari to investigate tunneling through an Eckart barrier. This semi‐classical method is theoretically rigorous and straightforward to implement. Among the TDDVR formulations, this report presents the first derivation of a rigorous form of quantum force (QF) for the present perspective. The validity of this semi‐classical approach is demanded based on the excellent agreement of the tunneling probability with the corresponding quantum results. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号