首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 335 毫秒
1.
The rational synthesis of the 2‐{1‐methylpyridine‐N‐oxide‐4,5‐[4,5‐bis(propylthio)tetrathiafulvalenyl]‐1H‐benzimidazol‐2‐yl}pyridine ligand ( L ) is described. It led to the tetranuclear complex [Dy4(tta)12( L )2] ( Dy‐Dy2‐Dy ) after coordination reaction with the precursor Dy(tta)3?2 H2O (tta?=2‐thenoyltrifluoroacetonate). The X‐ray structure of Dy‐Dy2‐Dy can be described as two terminal mononuclear units bridged by a central antiferromagnetically coupled dinuclear complex. The terminal N2O6 and central O8 environments are described as distorted square antiprisms. The ac magnetism measurements revealed a strong out‐of‐phase signal of the magnetic susceptibility with two distinct sets of data. The high‐ and low‐frequency components were attributed to the two terminal mononuclear single‐molecule magnets (SMMs) and the central dinuclear SMM, respectively. A magnetic hysteresis loop was detected at very low temperature. From both structural and magnetic points of view, the tetranuclear SMM Dy‐Dy2‐Dy is a self‐assembly of two known mononuclear SMMs bridged by a known dinuclear SMM.  相似文献   

2.
Lanthanide‐based extended coordination frameworks showing photocontrolled single‐molecule magnet (SMM) behavior were prepared by combining highly anisotropic DyIII and HoIII ions with the carboxylato‐functionalized photochromic molecule 1,2‐bis(5‐carboxyl‐2‐methyl‐3‐thienyl)perfluorocyclopentene (H2dae), which acts as a bridging ligand. As a result, two new compounds of the general formula [{LnIII2(dae)3(DMSO)3(MeOH)} ? 10 M eOH]n (M=Dy for 1 a and Ho for 2 ) and two additional pseudo‐polymorphs [{DyIII2(dae)3(DMSO)3(H2O)} ? x MeOH]n ( 1 b ) and [{DyIII2(dae)3(DMSO)3(DMSO)} ? x MeOH]n ( 1 c ) were obtained. All four compounds have 2D coordination‐layer topologies, in which carboxylate‐bridged Ln2 units are linked together by dae2? anions into grid‐like frameworks. All four compounds exhibited a strong reversible photochromic response to UV/Vis light. Moreover, both 1 a and 2 show field‐induced SMM behavior. The slow magnetic relaxation of 1 a is influenced by the photoisomerization reaction leading to the observation of the cross‐effect: photocontrolled SMM behavior.  相似文献   

3.
Two new Zn2Dy2 complexes were constructed from Zn (II) salen‐type Schiff base complex fragment and 2,6‐pyridinedimethanol (H2pdm) or its Br‐substituted analogue (4‐bromopyridine‐2,6‐diyl)dimethanol (H2Brpdm); their molecular formulas are [Zn2Dy2(L)2(pdm)2(MeOH)2](ClO4)2 [ 1 , H2L = N, N′‐ bis(3‐methoxysalicylidene)‐1,3‐diaminopropane] and [Zn2Dy2(L)2(Brpdm)2(MeOH)2](ClO4)2 [ 2 ], the Dy (III) ions of which have a NO7 triangular dodecahedral coordination sphere. The two complexes show not only ferromagnetic interaction but also field‐induced single‐molecule magnet (SMM) behavior, which are rare Dy (III)‐containing cluster complexes with the NO7 triangular dodecahedral coordination sphere that can show good magnetic relaxation. The energy barrier value of complex 2 is higher than those of complex 1 and the Dy (III) complexes with the DyNO7 triangular dodecahedral coordination configuration reported in the literature.  相似文献   

4.
The title compound, [Dy2(C8H7O2)6(C12H8N2)2], forms binuclear complexes, viz. di‐μ‐4‐methyl­benzoato‐κ4O:O′‐bis[bis(4‐methyl­benzoato‐κ2O,O′)(1,10‐phenanthroline‐κ2N,N′)dyspros­ium(III)] tetra‐μ‐4‐methyl­benzoato‐κ8O:O′‐bis[(4‐methyl­benzoato‐κ2O,O′)(1,10‐phenanthroline‐κ2N,N′)dyspros­ium(III)]. There are two independent binuclear com­plexes in the asymmetric unit, both of which are centrosymmetric. In one, the DyIII ions are linked by two bridging 4‐­methyl­benzoate groups, while in the other, the DyIII ions are linked by four bridging 4‐methyl­benzoate groups. The remaining 4‐methyl­benzoate groups and 1,10‐phenanthroline units coordinate to just one metal ion in bidentate modes.  相似文献   

5.
Three dinuclear lanthanide complexes [Ln2(H2L)2(NO3)4] [Ln = Dy ( 1 ), Tb ( 2 ), and Gd ( 3 )] [H3L = 2‐hydroxyimino‐N′‐[(2‐hydroxy‐3‐methoxyphenyl)methylidene]‐propanohydrazone] were solvothermally synthesized by varying differently anisotropic rare earth ions. Single‐crystal structural analyses demonstrate that all the three complexes are crystallographically isostructural with two centrosymmetric LnIII ions aggregated by a pair of monodeprotonated H2L anions. Weak intramolecular antiferromagnetic interactions with different strength were mediated by a pair of phenoxo bridges due to superexchange and/or single‐ion anisotropy. Additionally, the DyIII‐based entity shows the strongest anisotropy exhibits field‐induced single‐molecule magnetic behavior with two thermally activated relaxation processes. In contrast, 3 with isotropic GdIII ion has a significant cryogenic magnetocaloric effect with the maximum entropy change of 25.7 J · kg–1 · K–1 at 2.0 K and 70.0 kOe.  相似文献   

6.
Two novel trinuclear complexes [ZnCl(μ‐L)Ln(μ‐L)ClZn][ZnCl3(CH3OH)]?3 CH3OH (LnIII=Dy ( 1 ) and Er ( 2 )) have been prepared from the compartmental ligand N,N′‐dimethyl‐N,N′‐bis(2‐hydroxy‐3‐formyl‐5‐bromo‐benzyl)ethylenediamine (H2L). X‐ray studies reveal that LnIII ions are coordinated by two [ZnCl(L)]? units through the phenoxo and aldehyde groups, giving rise to a LnO8 coordination sphere with square‐antiprism geometry and strong easy‐axis anisotropy of the ground state. Ab initio CASSCF+RASSI calculations carried out on 1 confirm that the ground state is an almost pure MJ=±15/2 Kramers doublet with a marked axial anisotropy, the magnetic moment is roughly collinear with the shortest Dy?O distances. This orientation of the local magnetic moment of the DyIII ion in 1 is adopted to reduce the electronic repulsion between the oblate electron shape of the MJ=±15/2 Kramers doublet and the phenoxo‐oxygen donor atoms involved in the shortest Dy?O bonds. CASSCF+RASSI calculations also show that the ground and first excited states of the DyIII ion are separated by 129 cm?1. As expected for this large energy gap, compound 1 exhibits, in a zero direct‐current field, thermally activated slow relaxation of the magnetization with a large Ueff=140 K. The isostructural Zn–Er–Zn species does not present significant SMM behavior as expected for the prolate electron‐density distribution of the ErIII ion leading to an easy‐plane anisotropy of the ground doublet state.  相似文献   

7.
Two series of isostructural C3‐symmetric Ln3 complexes Ln3 ? [BPh4] and Ln3 ? 0.33[Ln(NO3)6] (in which LnIII=Gd and Dy) have been prepared from an amino‐bis(phenol) ligand. X‐ray studies reveal that LnIII ions are connected by one μ2‐phenoxo and two μ3‐methoxo bridges, thus leading to a hexagonal bipyramidal Ln3O5 bridging core in which LnIII ions exhibit a biaugmented trigonal‐prismatic geometry. Magnetic susceptibility studies and ab initio complete active space self‐consistent field (CASSCF) calculations indicate that the magnetic coupling between the DyIII ions, which possess a high axial anisotropy in the ground state, is very weakly antiferromagnetic and mainly dipolar in nature. To reduce the electronic repulsion from the coordinating oxygen atom with the shortest Dy?O distance, the local magnetic moments are oriented almost perpendicular to the Dy3 plane, thus leading to a paramagnetic ground state. CASSCF plus restricted active space state interaction (RASSI) calculations also show that the ground and first excited state of the DyIII ions are separated by approximately 150 and 177 cm?1, for Dy3 ? [BPh4] and Dy3 ? 0.33[Dy(NO3)6], respectively. As expected for these large energy gaps, Dy3 ? [BPh4] and Dy3 ? 0.33[Dy(NO3)6] exhibit, under zero direct‐current (dc) field, thermally activated slow relaxation of the magnetization, which overlap with a quantum tunneling relaxation process. Under an applied Hdc field of 1000 Oe, Dy3 ? [BPh4] exhibits two thermally activated processes with Ueff values of 34.7 and 19.5 cm?1, whereas Dy3 ? 0.33[Dy(NO3)6] shows only one activated process with Ueff=19.5 cm?1.  相似文献   

8.
The Schiff base ligand N1,N3‐bis(3‐methoxysalicylidene)diethylenetriamine (H2valdien) and the co‐ligand 6‐chloro‐2‐hydroxypyridine (Hchp) were used to construct two 3d–4f heterometallic single‐ion magnets [Co2Dy(valdien)2(OCH3)2(chp)2] ? ClO4 ? 5 H2O ( 1 ) and [Co2Tb(valdien)2(OCH3)2(chp)2] ? ClO4 ? 2 H2O ? CH3OH ( 2 ). The two trinuclear [CoIII2LnIII] complexes behave as a mononuclear LnIII magnetic system because of the presence of two diamagnetic cobalt(III) ions. Complex 1 has a molecular symmetry center, and it crystallizes in the C2/c space group, whereas complex 2 shows a lower molecular symmetry and crystallizes in the P21/c space group. Magnetic investigations indicated that both complexes are field‐induced single‐ion magnets, and the CoIII2–DyIII complex possesses a larger energy barrier [74.1(4.2) K] than the CoIII2–TbIII complex [32.3(2.6) K].  相似文献   

9.
Four salen‐type lanthanide(III) coordination polymers [LnH2L(NO3)3(MeOH)x]n [Ln = La ( 1 ), Ce ( 2 ), Sm ( 3 ), Gd ( 4 )] were prepared by reaction of Ln(NO3)3 · 6H2O with H2L [H2L = N,N′‐bis(salicylidene)‐1,2‐cyclohexanediamine]. Single‐crystal X‐ray diffraction analysis revealed that H2L effectively functions as a bridging ligand forming a series of 1D chain‐like polymers. The solid‐state fluorescence spectra of polymers 1 and 2 emit single ligand‐centered green fluorescence, whereas 3 exhibits typical red fluorescence of SmIII ions. The lowest triplet level of ligand H2L was calculated on the basis of the phosphorescence spectrum of GdIII complex 4 . The energy transfer mechanisms in the lanthanide polymers were described and discussed.  相似文献   

10.
Time‐domain synchrotron Mössbauer spectroscopy (SMS) based on the Mössbauer effect of 161Dy has been used to investigate the magnetic properties of a DyIII‐based single‐molecule magnet (SMM). The magnetic hyperfine field of [Dy(Cy3PO)2(H2O)5]Br3?2 (Cy3PO)?2 H2O?2 EtOH is with B0=582.3(5) T significantly larger than that of the free‐ion DyIII with a 6H15/2 ground state. This difference is attributed to the influence of the coordinating ligands on the Fermi contact interaction between the s and 4f electrons of the DyIII ion. This study demonstrates that 161Dy SMS is an effective local probe of the influence of the coordinating ligands on the magnetic structure of Dy‐containing compounds.  相似文献   

11.
By using the node‐and‐spacer approach in suitable solvents, four new heterotrimetallic 1D chain‐like compounds (that is, containing 3d–3d′–4f metal ions), {[Ni(L)Ln(NO3)2(H2O)Fe(Tp*)(CN)3] ? 2 CH3CN ? CH3OH}n (H2L=N,N′‐bis(3‐methoxysalicylidene)‐1,3‐diaminopropane, Tp*=hydridotris(3,5‐dimethylpyrazol‐1‐yl)borate; Ln=Gd ( 1 ), Dy ( 2 ), Tb ( 3 ), Nd ( 4 )), have been synthesized and structurally characterized. All of these compounds are made up of a neutral cyanide‐ and phenolate‐bridged heterotrimetallic chain, with a {? Fe? C?N? Ni(? O? Ln)? N?C? }n repeat unit. Within these chains, each [(Tp*)Fe(CN)3]? entity binds to the NiII ion of the [Ni(L)Ln(NO3)2(H2O)]+ motif through two of its three cyanide groups in a cis mode, whereas each [Ni(L)Ln(NO3)2(H2O)]+ unit is linked to two [(Tp*)Fe(CN)3]? ions through the NiII ion in a trans mode. In the [Ni(L)Ln(NO3)2(H2O)]+ unit, the NiII and LnIII ions are bridged to one other through two phenolic oxygen atoms of the ligand (L). Compounds 1 – 4 are rare examples of 1D cyanide‐ and phenolate‐bridged 3d–3d′–4f helical chain compounds. As expected, strong ferromagnetic interactions are observed between neighboring FeIII and NiII ions through a cyanide bridge and between neighboring NiII and LnIII (except for NdIII) ions through two phenolate bridges. Further magnetic studies show that all of these compounds exhibit single‐chain magnetic behavior. Compound 2 exhibits the highest effective energy barrier (58.2 K) for the reversal of magnetization in 3d/4d/5d–4f heterotrimetallic single‐chain magnets.  相似文献   

12.
《化学:亚洲杂志》2017,12(5):507-514
Five hexanuclear lanthanide clusters of composition [Ln64‐O)2(HCOO)2L4(HL′)2(dmf)2] [Ln=Dy ( 1 ), Er ( 2 ), Ho ( 3 ), Tb ( 4 ), Gd ( 5 ); H2L=2‐{[2‐(hydroxymethyl)phenylimino]methyl}‐6‐methoxyphenol; H3L′=3‐{[2‐(hydroxymethyl)phenylimino]methyl}benzene‐1,2‐diol; H3L′ was derived in situ from the H2L ligand] were prepared under solvothermal conditions. The [Ln6] cores of 1 – 5 possess an unprecedented motif, namely, two tetrahedron Ln4 units sharing an edge and two vertices. The six LnIII ions of 1 – 5 are connected through two μ4‐O anions. Magnetic susceptibility studies reveal that complex 1 exhibits frequency dependence of the alternating current susceptibility typical of single‐molecule magnets. Complex 1 possesses a relatively large energy barrier of 85 K among all of the reported Dy6 single‐molecule magnets.  相似文献   

13.
A series of dinuclear DyIII acetate complexes containing three different hydrazine‐functionalized Schiff‐base ligands ( hmb , hmi, and hb ) have been synthesized by one‐pot reaction with Dy(OAc)3·4H2O as the metal precursor. [Dy2( hmb )2(OAc)4]·MeCN ( 1 ·MeCN) and [Dy2( hmi )2(OAc)2(MeOH)2]·H2O ( 2 ·H2O) with keto and enol forms of the corresponding ligands, respectively, were shown the similar core structures but different ratio of DyIII to OAc. Moreover, the different coordination environments of complex [Dy2( hb )2(μ‐OAc)2(OAc)2(H2O)2]·DMF·H2O ( 3 ·DMF·H2O) also offered an opportunity to understand the relationship between structural model and catalytic properties. Bimetallic dysprosium complexes 1 – 3 were demonstrated to be active catalysts for copolymerization of carbon dioxide (CO2) and cyclohexene oxide (CHO) without cocatalysts. To the best of our knowledge, well‐defined catalyst 2 appears to be the first example of an air‐stable bimetallic dysprosium complex that is effective for CO2/CHO copolymerization and the formation of the perfectly alternating poly(cyclohexenecarbonate) with a high molecular weight. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 321–328  相似文献   

14.
The bifunctional ligand 2,6‐dipicolinoylbis(N,N‐diethylthiourea) (H2L) readily reacts with mixtures of Zn(CH3COO)2 and LnCl3 in MeOH at ambient temperature with formation of trinuclear heterobimetallic complexes [Zn2Ln(L)2(OAc)3] ( 1a – 1f ) (Ln = Ce, Nd, Sm, Gd, Dy, Er). The X‐ray single‐crystal diffraction and structural studies of the complexes revealed their isostructural nature, in which two doubly‐charged ligands {L2–} bind two Zn2+ ions with the terminal acylthiourea sites and one Ln3+ ion with the central 2,6‐pyridinedicarboxamide site. In the complexes, the coordination numbers of LnIII and ZnII ions are 9 and 5, respectively. Magnetic properties of the complexes were studied by temperature‐dependent dc magnetic measurements. The observed μeff values at room temperature are all closed to the calculated values. Fitting χM and M data of [Zn2Gd(L)2(OAc)3] ( 1d ) shows a giso value of 1.94.  相似文献   

15.
Four new oxo‐centered MnIII‐salicylaldoximate triangle‐based extended complexes [MnIII6O2(salox)6(EtOH)4(phda)]n?(saloxH2)n?(2H2O)n ( 1 ), [MnIII6O2(salox)6(MeOH)5(5‐I‐isoph)]n?(3 MeOH)n ( 2 ), [MnIII6O2(salox)6(MeOH)4(H2O) (5‐N3‐isoph)]n?(4 MeOH)n ( 3 ) and [MnIII3NaO(salox)3(MeOH)4(5‐NO2‐isoph)]n?(MeOH)n (H2O)n ( 4 ) [salox=salicylaldoximate, phda=1,3‐phenylenediacetate, isoph=isophthalate] have been synthesized under similar reaction conditions. Single crystal X‐ray structures show that in 1 , only one type of Mn6 cluster is arranged in 1 D, whereas in 2 and 3 there are two types of clusters, differing in the way the triangle units are joined and assembled. In complex 4 , however, the basic building structure is heteronuclear and based on Mn3 units extended in 2 D. Susceptibility measurements (dc and ac) over a wide range of temperatures and fields show that the complexes 1 , 2 , and 3 behave as single molecule magnets (SMMs) with S=4 ground state, while 4 is dominantly antiferromagnetic with a ground spin state S=2. Density functional theory calculations have been performed on model complexes to provide a qualitative theoretical interpretation for their overall magnetic behavior.  相似文献   

16.
The self‐assembly of DyIII–3‐hydroxypyridine (3‐OHpy) complexes with hexacyanidocobaltate(III) anions in water produces cyanido‐bridged {[DyIII(3‐OHpy)2(H2O)4] [CoIII(CN)6]}?H2O ( 1 ) chains. They reveal a single‐molecule magnet (SMM) behavior with a large zero direct current (dc) field energy barrier, ΔE=266(12) cm?1 (≈385 K), originating from the single‐ion property of eight‐coordinated DyIII of an elongated dodecahedral geometry, which are embedded with diamagnetic [CoIII(CN)6]3? ions into zig‐zag coordination chains. The SMM character is enhanced by the external dc magnetic field, which results in the ΔE of 320(23) cm?1 (≈460 K) at Hdc=1 kOe, and the opening of a butterfly hysteresis loop below 6 K. Complex 1 exhibits white DyIII‐based emission realized by energy transfer from CoIII and 3‐OHpy to DyIII. Low temperature emission spectra were correlated with SMM property giving the estimation of the zero field ΔE. 1 is a unique example of bifunctional magneto‐luminescent material combining white emission and slow magnetic relaxation with a large energy barrier, both controlled by rich structural and electronic interplay between DyIII, 3‐OHpy, and [CoIII(CN)6]3?.  相似文献   

17.
The salen‐type ligand H2L [H2L = N,N′‐bis(salicylidene)‐1,2‐cyclohexanediamine] was utilized for the synthesis of two lanthanide(III) coordination polymers [LnH2L(NO3)3MeOH]n [Ln = Eu ( 1 ) and Ln = Lu ( 2 )]. The single‐crystal X‐ray diffraction analyses of 1 and 2 revealed that they are isomorphous and exhibit one‐dimension neutral structure, in which H2L effectively functions as a bridging ligand and give rise to a chain‐like polymer. The luminescent properties of polymers in solid state and in solution were investigated and 1 exhibits typical red luminescence of EuIII ions in solid state and dichloromethane solution and 2 emits the ligand‐centered blue luminescence. The energy transfer mechanisms in these luminescent lanthanide polymers were described through calculation of the lowest triplet level of ligand H2L.  相似文献   

18.
Treatment of Ln(NO3)3?nH2O with 1 or 2 equiv 2,2′‐bipyrimidine (BPM) in dry THF readily afforded the monometallic complexes [Ln(NO3)3(bpm)2] (Ln=Eu, Gd, Dy, Tm) or [Ln(NO3)3(bpm)2]?THF (Ln=Eu, Tb, Er, Yb) after recrystallization from MeOH or THF, respectively. Reactions with nitrate salts of the larger lanthanide ions (Ln=Ce, Nd, Sm) yielded one of two distinct monometallic complexes, depending on the recrystallization solvent: [Ln(NO3)3(bpm)2]?THF (Ln=Nd, Sm) from THF, or [Ln(NO3)3(bpm)(MeOH)2]?MeOH (Ln=Ce, Nd, Sm) from MeOH. Treatment of UO2(NO3)2?6H2O with 1 equiv BPM in THF afforded the monoadduct [UO2(NO3)2(bpm)] after recrystallization from MeOH. The complexes were characterized by their crystal structure. Solid‐state luminescence measurements on these monometallic complexes showed that BPM is an efficient sensitizer of the luminescence of both the lanthanide and the uranyl ions emitting visible light, as well as of the YbIII ion emitting in the near‐IR. For Tb, Dy, Eu, and Yb complexes, energy transfer was quite efficient, resulting in quantum yields of 80.0, 5.1, 70.0, and 0.8 %, respectively. All these complexes in the solid state were stable in air.  相似文献   

19.
The three‐dimensional (3D) samarium phosphonate framework [Sm2(H2L)3]n · 5n(H2O) ( 1 ) [H4L = N,N′‐piperazine‐bis(methylenephosphonic acid)] was synthesized by hydrothermal reaction of Sm2O3 with N,N′‐piperazine‐bis(methylenephosphonic acid) hydrochloride in the presence of glutaric acid. Single‐crystal X‐ray diffraction analysis reveals that it has a 3D open framework structure with helical channels along the crystallographic c axis. The channels are filled up by discrete pentameric water clusters, which are hydrogen‐bonded to the host. Compound 1 displays two interesting structural features: (a) two of three H2L2– ligands adopt the less stable a,e‐cis conformation; (b) both of the SmIII ions exhibit rather unusual octahedral coordination arrangements. In addition, the photoluminescent property was investigated.  相似文献   

20.
Two dinuclear DyIII complexes, [Dy2(hmb)2(OTf)2(H2O)4] ? HOTf ? 2 THF ( A? HOTf ? 2 THF) and [Dy2(hmi)3(H2O)2] ? 2 HOTf ( B? 2 HOTf), have been synthesized by the reaction of Dy(OTf)3 and the Schiff‐base ligands H2hmb (N′‐(2‐hydroxy‐3‐methoxybenzylidene)benzohydrazide) or H2hmi ((2‐hydroxy‐3‐methoxyphenyl)methylene isonicotinohydrazine). Disarmed glycosyl trichloroacetimidates can be activated by complex A in the synthesis of 1,2‐trans‐glycosides with primary and secondary acceptors. This method offers an efficient route to selectively deacetylated monosaccharides and disaccharides in high yields and a green catalyst that can be easily recycled and reused.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号