首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Slow initiation relative to propagation has previously prevented photodimers of 9‐bromoanthracene or 9‐chloroanthracene, formed by [4 + 4] photocyclization reactions of the analogous 9‐haloanthracene, from being viable initiators in atom transfer radical polymerization (ATRP) reactions. The resulting polymers were found to possess high polydispersity index (PDI) values, much higher than expected number average molecular weight (Mn) values, with the reaction displaying a nonlinear relationship between monomer conversion and Mn. We report here the use of silane radical atom abstraction (SRAA) to create initiating bridgehead radicals in the presence of 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPO) to mediate the polymerization. When using SRAA coupled with nitroxide mediated polymerization, a dramatic decrease in PDI values was observed compared with analogous ATRP reactions, with Mn values much closer to those anticipated based on monomer‐to‐initiator ratios. Analysis using UV‐Vis spectroscopy indicated only partial anthracene labeling (~ 25%) on the polymers, consistent with thermolysis of the anthracene photodimer coupled with competition between initiation from the bridgehead photodimer radical and silane‐based radical. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6016–6022, 2008  相似文献   

2.
ortho‐Quinones, such as phenanthrenequinone and 3,6‐dimethoxyphenanthrenequinone, added with a catalytic amount of metal complexes, impart control to styrene polymerization via the previously reported quinone transfer radical polymerization (QTRP) process. In this study, compounds that mimic the dormant species proposed in the QTRP mechanism have been synthesized and tested as initiators in the presence of cobalt(II) acetylacetonate. These compounds, and particularly 3,6‐dimethoxy‐10‐hydroxy‐10‐(1‐phenyl‐ethyl)‐phenanthren‐9‐one, are effective control agents for the radical polymerization of styrene, in agreement with the recently proposed mechanism. Moreover, the induction period, which has been systematically reported in the presence of ortho‐quinones, is no longer observed. The end capping of the polystyrene chains by the control agent has been confirmed by 1H NMR analysis. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1233–1244, 2006  相似文献   

3.
This article first reports a fast and controlled living radical polymerization (LRP) of acrylonitrile, evidenced by 81.3% monomer conversion within 40 min and well‐defined the polymers with a narrow polydispersity index (PDI) range of 1.14?1.38. This was achieved by utilizing azobis(isobutyronitrile) as radical initiator with a high concentration up to 190 mM and CuBr2 as catalyst with a very low concentration down to 50 ppm. The polymerization displayed typical LRP characteristics, including pseudo first‐order kinetics of polymerization, the linear increase of number‐average molecular weights (MWs), low PDI values. The influence of various experimental components, radical initiator concentration, catalyst concentration, and reaction temperature, on the polymerization reaction and MW as well as PDI has been investigated in detail. 1H NMR and gel permeation chromatography analyses as well as chain extension reaction confirmed the very high chain‐end functionality of the resultant polymer. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
A bicomponent initiation system consisting of 2,2,6,6‐tetramethylpiperidine‐N‐oxyl (TEMPO) and the water soluble initiator potassium persulfate (KPS) was used to develop a robust and versatile semibatch emulsion polymerization process to obtain polystyrene (PS) latexes with solids contents of 5–40 wt %. A window of operating conditions was found that yielded high conversion (>95%) stable latexes and well controlled polymers, overcoming limitations found in previous attempts at developing similar processes using TEMPO. The critical parameters studied were surfactant concentration, monomer concentration in the nucleation step and the monomer feed rate in the semibatch step. Methyl acrylate (MA) was used in the nucleation step to improve the nitroxide efficiency (NEff). Latexes having molecular weight distribution (MWD) with dispersity (?) lower than 1.5, average particle size (Dp) from ≈32 to ≈500 nm, nitroxide efficiencies NEff up to ≈1.0 and monomer conversions >90% were obtained in less than 12 h with solids contents up to 40 wt %. These results constitute a significant advance over prior efforts in TEMPO‐mediated polymerization in aqueous dispersions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 49–62  相似文献   

5.
Initiators for continuous activator regeneration atom transfer radical polymerization technique was first accessed to acrylonitrile by using CuBr2/2,2′‐bipyridine as the catalyst, ethyl 2‐bromoisobutyrate as the halogen initiator, and azobis(isobutyronitrile) as the free radical initiator. The key to success is ascribed to the facile achievement of the rapid equilibrium between active species and dormant species. Effects of ligand, catalyst concentration, free radical initiator concentration, and reaction temperature on the polymerization reaction and molecular weight (MW) as well as polydispersity index (PDI) were investigated in detail. The polymerization proceeded in a controlled/living fashion even though the concentration of copper catalyst decreased to 50 ppm, which is evident in pseudo first‐order kinetics of polymerization, linear increase of molecular weight, low PDI, and high chain‐end functionality of the generated polymer. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
A trifunctional initiator, 2‐phenyl‐2‐[(2,2,6,6‐tetramethyl)‐1‐piperidinyloxy] ethyl 2,2‐bis[methyl(2‐bromopropionato)] propionate, was synthesized and used for the synthesis of miktoarm star AB2 and miktoarm star block AB2C2 copolymers via a combination of stable free‐radical polymerization (SFRP) and atom transfer radical polymerization (ATRP) in a two‐step or three‐step reaction sequence, respectively. In the first step, a polystyrene (PSt) macroinitiator with dual ω‐bromo functionality was obtained by SFRP of styrene (St) in bulk at 125 °C. Next, this PSt precursor was used as a macroinitiator for ATRP of tert‐butyl acrylate (tBA) in the presence of Cu(I)Br and pentamethyldiethylenetriamine at 80 °C, affording miktoarm star (PSt)(PtBA)2 [where PtBA is poly(tert‐butyl acrylate)]. In the third step, the obtained St(tBA)2 macroinitiator with two terminal bromine groups was further polymerized with methyl methacrylate by ATRP, and this resulted in (PSt)(PtBA)2(PMMA)2‐type miktoarm star block copolymer [where PMMA is poly(methyl methacrylate)] with a controlled molecular weight and a moderate polydispersity (weight‐average molecular weight/number‐average molecular weight < 1.38). All polymers were characterized by gel permeation chromatography and 1H NMR. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2542–2548, 2003  相似文献   

7.
Styrene has been polymerized by a Quinone Transfer Radical Polymerization (QTRP) based on the redox reaction of an ortho‐quinone and a metal catalyst. Several metal acetylacetonates have been tested in this work. The radical polymerization of styrene is largely controlled when phenanthrenequinone (PhQ) is used with catalytic amounts of Co(acac)2, Ni(acac)2, Mn(acac)2 or 3, and Al(acac)3. As a rule, in the presence of all these metallic complexes, the polystyrene molar mass increases with the monomer conversion, and polydispersity (Mw/Mn) is in the 1.3–1.6 range (at least until 40% monomer conversion). Styrene polymerization has also been resumed by polystyrene chains prepared by QTRP. In the specific case of manganese acetylacetonates, an amine or phosphine ligand has to be added for the control to be effective. Finally, two mechanistic hypotheses have been proposed, depending on whether the oxidation state of the metal can be easily changed or not. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2723‐2733, 2005  相似文献   

8.
N‐Bromosuccinimide (NBS) was used as the initiator in the atom transfer radical polymerizations of styrene (St) and methyl methacrylate (MMA). The NBS/CuBr/bipyridine (bpy) system shows good controllability for both polymerizations and yields polymers with polydispersity indexes ranging from 1.18 to 1.25 for St and 1.14 to 1.41 for MMA, depending on the conditions used. The end‐group analysis of poly(MMA) and polystyrene indicated the polymerization is initiated by the succinimidyl radicals formed from the redox reaction of NBS with CuBr/bpy. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5811–5816, 2004  相似文献   

9.
Controlled polymerizations of vinyl monomers such as methyl methacrylate and styrene are achieved using N‐chloro,N‐propyl‐p‐toluenesulfonamide (NCPT) together with a cuprous bromide/hexahexyl triethylenetetramine (CuBr/H‐TETA) complex. Although N‐halosulfonamides are known to decompose radically to give free chlorine, NCPT alone (without a cuprous complex) does not initiate any polymerization even in prolonged reaction times. Instead these add to the double bonds to give 2‐chloroethylsulfonamides. In the present polymerization system a good chlorine donator (NCPT) is combined with an organic soluble complex (CuBr/H‐TETA) to perform atom transfer radical polymerizations (ATRPs) in homogenous conditions. The linear proportionality of the molecular weights to the conversions and straight lines observed in ln(M0/M) (where M0 and M are the monomer contents at the beginning and at any time, respectively) versus time plots indicate typical controlled polymerization characteristics. The use of freshly prepared NCPT is advisable due to its slow and spontaneous decomposition when standing at room temperatures. Because of their easy preparation, N‐chlorosulfonamides can be used and are preferred instead of special halogen compounds commonly used in copper mediated ATRP. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2691–2695, 2001  相似文献   

10.
Styrene radical polymerizations mediated by the imidazolidinone nitroxides 2,5‐bis(spirocyclohexyl)‐3‐methylimidazolidin‐4‐one‐1‐oxyl (NO88Me) and 2,5‐bis(spirocyclohexyl)‐3‐benzylimidazolidin‐4‐one‐1‐oxyl (NO88Bn) were investigated. Polymeric alkoxyamine (PS‐NO88Bn)‐initiated systems exhibited controlled/living characteristics at 100–120 °C but not at 80 °C. All systems exhibited rates of polymerization similar to those of thermal polymerization, with the exception of the PS‐NO88Bn system at 80 °C, which polymerized twice as quickly. The dissociation rate constants (kd) for the PS‐NO88Me and PS‐NO88Bn coupling products were determined by electron spin resonance at 50–100 °C. The equilibrium constants were estimated to be 9.01 × 10?11 and 6.47 × 10?11 mol L?1 at 120 °C for NO88Me and NO88Bn, respectively, resulting in the combination rate constants (kc) 2.77 × 106 (NO88Me) and 2.07 × 106 L mol?1 s?1 (NO88Bn). The similar polymerization results and kinetic parameters for NO88Me and NO88Bn indicated the absence of any 3‐N‐transannular effect by the benzyl substituent relative to the methyl substituent. The values of kd and kc were 4–8 and 25–33 times lower, respectively, than the reported values for PS‐TEMPO at 120 °C, indicating that the 2,5‐spirodicyclohexyl rings have a more profound effect on the combination reaction rather than the dissociation reaction. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 327–334, 2003  相似文献   

11.
Star‐branched polystyrenes, with polydispersity indices of 1.15–1.56 and 4–644 equal arms, were synthesized by the reaction of 2,2,6,6‐tetramethylpiperidin‐1‐yloxy (TEMPO)‐capped polystyrene (PS‐T) with divinylbenzene (DVB). The characterization of PS‐T and the final star polymers was carried out by size exclusion chromatography, low‐angle laser light scattering, and viscometry. The degree of branching of the star polymers depended on the DVB/PS‐T ratio and the PS‐T molecular weight. An asymmetric (or miktoarm) star homopolymer of the PSnPS′n type was made by the reaction of the PSn symmetric star, which had n TEMPO molecules on its nucleus and consisted of a multifunctional initiator, with extra styrene. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 320–325, 2001  相似文献   

12.
The copolymerization of divinylbenzene (DVB) and ethylstyrene (EtSt) was carried out at 70 and 80 °C in benzene with dimethyl 2,2‐azobisisobutyrate (MAIB) at high concentrations as initiator in the presence of methyl benzyloxyiminoacetate (MBOIA), a glyoxylic oxime ether, as a retarder. The copolymerization system of DVB (0.25 mol/L), EtSt (0.25 mol/L), MBOIA (0.5 mol/L), and MAIB (0.5 mol/L) gave benzene‐soluble copolymers despite a considerably high concentration of DVB as an excellent crosslinker. The yield and molecular weight of the resulting copolymers increased with time both at 70 and 80 °C and then leveled off because of initiator consumption. The homogeneous polymerization system involved electron spin resonance (ESR), observable nitrogen‐centered polymer radicals (MBOIA·) under the actual polymerization conditions. The MBOIA· concentration increased with time despite a homogeneous polymerization system, suggesting the formation of rigid hyperbranched polymers. A benzene solution of isolated copolymer also showed an ESR signal. The copolymer was soluble in acetone, toluene, chloroform, ethyl acetate, tetrahydrofuran, and N,N‐dimethylformamide but insoluble in n‐hexane, methanol, and dimethyl sulfoxide. MAIB fragments as high as 30–40 mol % were incorporated into the copolymers through initiation and primary radical termination, on the basis of which this polymerization was named the initiator‐fragment incorporation radical polymerization. MBOIA (13–16 mol%) was also incorporated into the copolymers through an opening of the C?N bond. The intrinsic viscosity of the copolymers was very low (0.08 dL/g), and the reduced viscosity was almost independent of the polymer concentration, supporting a hyperbranched structure of them. Gel permeation chromatography and multi‐angle laser light scattering and transmission electron microscopy revealed that the copolymer was formed as a hyperbranched nanoparticle. The thermal behavior of the copolymer was examined by dynamic thermogravimetry and differential scanning calorimetry. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3038–3047, 2003  相似文献   

13.
This work successfully prepared nanohybrids by in situ atom transfer radical polymerization (ATRP) of styrene from titanate nanotubes (TNTs). Fourier-transform infrared (FT-IR), pronton nuclear magnetic resonance spectroscopy (1H NMR), and thermal gravimetric analysis (TGA) were used to verify the successful graft of polystyrene (PS) chains from TNTs. Transmission electron microscopy (TEM) dis-played that the obtained PS-g-TNTs nanohybrids had a core-shell structure of TNT core and PS shell. The grafted PS ...  相似文献   

14.
The radical polymerization of various (meth)acrylamides in the presence of Lewis acids such as Yb(OTf)3 and Y(OTf)3 was carried out. The polymerization with Lewis acids led to highly isotactic polymers, while the polymers synthesized without Lewis acids were atactic or syndiotactic. The dependence of the polymer properties on the tacticity was also demonstrated.  相似文献   

15.
16.
This article is aimed at revisiting the synthesis of copper‐based catalysts immobilized onto crosslinked polystyrene (PS) resins carrying pyridinimine groups (PS–pyridinimine/CuBr). These supported catalytic systems were used for promoting the atom transfer radical polymerization of methyl methacrylate as initiated by ethyl‐2‐bromoisobutyrate. It was evidenced that the control over the polymerization reaction was strongly influenced by the coordination ability and extent of the transition‐metal salt on the supported pyridinimine ligands. For instance, increasing the ligand‐to‐catalyst molar ratio allowed for increasing the polymerization rate and improving the control over the molecular parameters of the synthesized poly(methyl)methacrylate (PMMA) in terms of the molar masses and molecular weight distributions. The PS–pyridinimine/CuBr supported catalyst was recycled and reused for further polymerization reactions. After two recycling steps, the reaction activity appeared to be preserved, and the control was improved in terms of the initiation efficiency. However, a slight increase in the polydispersity indices was observed. Interestingly, the introduction of a flexible polydimethylsiloxane spacer between the PS support and the catalytic sites led to some more improvement of the control over the molecular parameters of PMMA chains, which displayed narrower molecular weight distributions. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 744–756, 2006  相似文献   

17.
A stable nitroxyl radical functionalized with an initiating group for atom transfer radical polymerization (ATRP), 4‐(2‐bromo‐2‐methylpropionyloxy)‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy (Br‐TEMPO), was synthesized by the reaction of 4‐hydroxyl‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy with 2‐bromo‐2‐methylpropionyl bromide. Stable free radical polymerization of styrene was then carried out using a conventional thermal initiator, dibenzoyl peroxide, along with Br‐TEMPO. The obtained polystyrene had an active bromine atom for ATRP at the ω‐end of the chain and was used as the macroinitiator for ATRP of methyl acrylate and ethyl acrylate to prepare block copolymers. The molecular weights of the resulting block copolymers at different monomer conversions shifted to higher molecular weights and increased with monomer conversion. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2468–2475, 2006  相似文献   

18.
A novel hexafunctional discotic initiator, 2,3,6,7,11,12‐hexakis(2‐bromobutyryloxy)triphenylene (HBTP), was synthesized by the esterification of 2,3,6,7,11,12‐hexahydroxytriphenylene with 2‐bromobutyryl chloride. Atom transfer radical polymerizations of styrene, methyl acrylate, and n‐butyl acrylate were carried out in 50 vol % tetrahydrofuran with HBTP/copper(I) bromide/2,2′‐bipyridyl as an initiation system. The polymers produced had well‐controlled molecular weights and narrow molecular weight distributions (<1.2). On the basis of 1H NMR spectra of the star polymer and its hydrolyzed products, we can conclude that the initiator quantitatively initiated the polymerization of vinyl monomers and that a star polymer with a discotic core was obtained. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2233–2243, 2001  相似文献   

19.
Living radical polymerizations of acrylate are known to be difficult to achieve using TEMPO as a mediator. The stable free radical polymerization (SFRP) of acrylate tends to stop at low monomer conversion due to the accumulation of TEMPO in the medium as a result of unavoidable bimolecular termination. Rather than solving this problem by destroying the excess nitroxide using ascorbic acid or glyceraldehyde associated with pyridine as reported recently, high temperature initiators were used to slowly and continuously generate new radicals throughout the polymerization to consume the excess TEMPO molecules. Polymerizations of n-butyl acrylate initiated by the alkoxyamine unimer (1-benzoyloxy)-2-phenyl-2-(2′,2′,6′,6′-tetramethyl-1′-piperidinyloxy)ethane (BST) were performed between 130 °C and 134 °C in the presence of a series of high temperature peroxide and azo initiators. The best results in this study were obtained by the continuous addition of small amounts of di-tert-amyl peroxide throughout the polymerization. Under these conditions, the acrylate polymerizations fulfilled the criteria of a controlled polymerization process although the molecular weight distributions were slightly broad (Mw/Mn ∼ 1.5).  相似文献   

20.
A bifunctional alkyl halide, namely l, 2-bis(2′-bromobutyryl) ethane (BBrBE), was synthesized and used to initiate the bulk atom transfer radical polymerization (ATRP) of styrene (St) at 110°C in the presence of CuBr/2,2′-bipyridyl. The narrow polydispersity of polystyrene (PSt) with precisely two arms could be synthesized. The initiate ability of the two active bromide functional groups at both sides of BBrBE for St and the propagation ability of the two arms were confirmed to be similar by the characterization of the individual arms obtained upon hydrolysis of the ester link between the core and the branches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号