首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the counterpoise‐corrected potential energy surface method, the stationary structures of the π Br‐bond complexes C2H4‐nFn? BrF (n = 0–2) with all real frequencies have been obtained at MP2/aug‐cc‐pVDZ level. The order of the π Br‐bond length is 2.625 Å (C2H4? BrF) < 2.714 Å (C2H3F? BrF) < 2.751 Å (g‐C2H2F2? BrF) < 2.771 Å (trans‐C2H2F2? BrF) < 2.778 Å (cis‐C2H2F2? BrF). The interaction energies (Eint) are, respectively,‐5.9 (C2H4? BrF),‐4.4 (C2H3F? BrF),‐3.7 (g‐C2H2F2? BrF),‐3.1 (cis‐C2H2F2? BrF),‐2.8 kcal/mol (trans‐C2H2F2? BrF), at the CCSD (T)/aug‐cc‐pVDZ level, which include larger electron correlation contributions (Ecorre). The order of Ecorre is‐3.40 (C2H4? BrF),‐3.60 (C2H3F? BrF),‐3.85 (g‐C2H2F2? BrF),‐3.86 (cis‐C2H2F2? BrF),‐3.88 kcal/mol (trans‐C2H2F2? BrF). The earlier results show above that the F substituent effect elongates the π Br‐bond, reduces the Eint, and increases the Ecorre contribution of the interaction energy. Interestingly, the interaction energy of the cis‐C2H2F2? BrF structure with longer interaction distance is larger than that of the corresponding trans‐C2H2F2? BrF structure with shorter interaction distance. This reason comes from a special secondary interaction between lone pairs of Br atom with positive charge and some atoms (H, C) with positive charges of C2H2F2 in the cis‐C2H2F2? BrF structure. Comparing with corresponding C2H4‐nFn? ClF and C2H4‐nFn? HF, the C2H4‐nFn? BrF system has the larger Eint in which main contribution comes from the larger Ecorre, representing the larger dispersion interaction. The larger Ecorre contribution of the Eint of π Br‐bond can be used to understand that the π Br‐bond is shorter and stronger than corresponding π Cl‐bond. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

2.
3.
A computational study of the intramolecular pnicogen bond in PHF? (CH2)n? PHF (n=2–6) systems was carried out. For each compound, two different conformations, (R,R) and (R,S), were considered on the basis of the chirality of the phosphine groups. The characteristics of the closed conformers, in which the pnicogen interaction occurs, were compared with those of the extended conformer. In several cases, the closed conformations are more stable than the extended conformations. The calculated interaction energies of the pnicogen contact, by means of isodesmic reactions, provide values between ?3.4 and ?26.0 kJ mol?1. Atoms in molecules and electron localization function analysis of the electron density showed that the systems in the closed conformations with short P ??? P distances have a partial covalent character in this interaction. The calculated absolute chemical shieldings of the P atoms showed an exponential relationship with the P ??? P distance. In addition, a search in the Cambridge crystallographic database was carried out to detect those compounds with a potential intramolecular pnicogen bond in the solid phase.  相似文献   

4.
5.
Sulfoximide and Sulfoximidium Salts – Structures and Hydrogen Bonding In the solid state dimethylsulfoximide ( 1 ) (orthorhombic; space group Pbca; a = 577.8, b = 931.2 and c = 1645.6 pm) makes intermolecular N? H ? N hydrogen bonds. The hydrogen halide salts (CH3)2S(O)NH2+Hal? (( 2 ), Hal??Cl?; ( 4 ), Hal??Br?) reacts with metal halides to yield (CH3)2S(O)NH2+MHal with the complex anions (( 5 ), MHal?SbCl4?; ( 6 ), MHal?SbCl52?; ( 7 ), MHal?SbCl6?; ( 8 ), MHal?SbBr52?; ( 9 ), MHal?AlCl4?). 2 crystallizes from ethanol (96%) as [(CH3)2S(O)NH2+Cl?]2 · H2O ( 3 ). The structures of 3 (monoclinic; space group P21/c; a = 917.0, b = 1344.7, c = 1080.8 pm and β = 103.8°; Z = 10), 4 (orthorhombic; space group Pbcn; a = 1028.9, b = 1132.6, c = 1074.1 pm; Z = 8) and 6 (monoclinic; space group C2/c; a = 2041.1, b = 1101.4, c = 3365.6 pm and β = 153.8°; Z = 8) are determined by X-ray analysis. In 6 Sb is coordinated in a distorted octahedra by 6 Cl in three short (mean 245,5 pm; SbCl3) and three long distances (291 to 299 pm; Cl?). Two of the chloride ions connect the Sb atoms to infinite Sb …? Cl …? Sb chains. Except for 7 and 9 there are bridges between the NH2 groups and the halide ions. The NH valence vibrations are discussed in view of hydrogen bonding.  相似文献   

6.
The mesophase behaviour of liquid-crystalline polymethacrylates with 4′-trifluoromethoxyazobenzene mesogens and alkylene spacers $ \left( {\rlap{--} ({\rm CH}_{\rm 2} \rlap{--} )_n ,n = 2 - 6} \right) $ in the side chains was investigated and compared with that of the corresponding non-fluorinated polymers. The fluorinated polymers with spacer lengths n = 5 and 6 are the first side-group liquid-crystalline polymethacrylates showing a nematic phase below a smectic A phase.  相似文献   

7.
An α‐diimine‐stabilized Al? Al‐bonded compound [L2?AlII? AlIIL2?] (L=[{(2,6‐iPr2C6H3)NC(Me)}2]; 1 ) consists of dianionic α‐diimine ligands and sub‐valent Al2+ ions and thus could potentially behave as a multielectron reductant. The reactions of compound 1 with azo‐compounds afforded phenylimido‐bridged products [L?AlIII(μ2‐NPh)(μ2‐NAr)AlIIIL?] ( 2 – 4 ). During the reaction, the dianionic ligands and Al2+ ions were oxidized into monoanions and Al3+, respectively, whilst the [NAr]2? imides were produced by the four‐electron reductive cleavage of the N?N double bond. Upon further reduction by Na, the monoanionic ligands in compound 2 were reduced to the dianion to give [(L2?)2AlIII22NPh)2Na2(thf)4] ( 5 ). Interestingly, when asymmetric azo‐compounds were used, the asymmetric adducts were isolated as the only products (compounds 3 and 4 ). DFT calculations indicated that the reaction was quite feasible in the singlet electronic state, but the final product with the triplet‐state monoanionic ligands could result from an exothermic singlet‐to‐triplet conversion during the reaction process.  相似文献   

8.
Reactions of the zinc(I) complex [Zn2(Mesnacnac)2] (Mesnacnac=[(2,4,6‐Me3C6H2)NC(Me)]2CH) with solid K3Bi2 dissolved in liquid ammonia yield crystals of the compound K4[ZnBi2]⋅(NH3)12 ( 1 ), which contains the molecular, linear heteroatomic [Bi Zn Bi]4− polyanion ( 1 a ). This anion represents the first example of a three‐atomic molecular ion of metal atoms being iso(valence)‐electronic to CO2 and being synthesized in solution. The analogy of the discrete [Bi Zn Bi]4− anion and the polymeric [(ZnBi4/2)4−] unit to monomeric CO2 and polymeric SiS2 is rationalized.  相似文献   

9.
The Morita? Baylis? Hillman (MBH) reactions of (4S,5R,7R,8R)‐ and (4R,5R,7R,8R)‐4‐hydroxy‐7,8‐dimethoxy‐7,8‐dimethyl‐6,9‐dioxaspiro[4.5]dec‐2‐en‐1‐ones ( 2 and 3 , resp.) with aldehydes using various catalysts were studied. A combination of Bu3P/phenol in THF was found being optimum conditions giving the corresponding MBH adducts with high diastereoisomeric ratios. After separation, each stereomerically pure isomer of the MBH adducts was subjected to hydrolysis employing 1% aq. CF3COOH (TFA) in a water bath of an ultrasonic cleaner to afford the corresponding polyhydroxylated cyclopentenones in good yields.  相似文献   

10.
11.
12.
13.
The design, synthesis, and use of two new, stable, functionalized chain transfer agents (CTA's) containing OH and amine end groups for the RAFT polymerization is reported: 2‐hydroxyethoxy‐carbonylphenylmethyl dithiobenzoate and 2‐(2‐(tert‐butoxycarbonyl)ethylamino)‐2‐oxo‐1‐phenylethyl benzodithioate, respectively. The RAFT polymerization of n‐hexyl acrylate (HA) using those CTA's, were compared to several other functionalized dithiobenzoate esters reported in the literature containing COOH and Ester groups. The performances of the dithiobenzoates were compared in terms of kinetics and molecular weight distribution control. Good control in polymerization of n‐hexyl acrylate with a linear increase of Mn with conversion mantaining polydispersity indices (PDI) below 1.1 was obtained by use of the new functionalized CTA's developed and also by use of some other CTA's tested, to produce well‐defined linear polymers with one specific chain‐end functionality: ? OH, ? COOH or Amine. Using a postpolymerization reaction with functionalized azocompounds in a 5 to 1 ratio, α,ω‐telechelic polymers, with ? OH or ? COOH as functional group at the second end were obtained. By using this synthetic strategy α,ω‐homotelechelic and heterotelechelic polymers were readily prepared. The chemical availability of functional end‐groups in the telechelics was demonstrated by reaction with methacrylic anhydride. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3033–3051, 2010  相似文献   

14.
The conformational study of β‐thioaminoacrolein was performed at various theoretical levels, HF, B3LYP, and MP2 with 6‐311++G(d,p) basis set, and the equilibrium conformations were determined. To have more reliable energies, the total energies of all conformers were recomputed at high‐level ab initio methods, G2MP2, G3, and CBS‐QB3. According to these calculations, the intramolecular hydrogen bond is accepted as the origin of conformational preference in thialamine (TAA) and thiolimine groups. The hydrogen bond strength in various resonance‐assisted hydrogen bond systems was evaluated by HB energy, geometrical parameters, topological parameters, and charge transfers corresponding to orbital interactions. Furthermore, our results reveal that the TAA tautomer has extra stability with respect to the other tautomers. The population analyses of the possible conformations by NBO predict that the origin of this preference is mainly due to the π‐electron delocalization in framework of TAA forms, especially usual πC?C → π*C?S and Lp (N) → π*C?C charge transfers. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

15.
16.
β‐ or α,β‐Substituted vinylpyridines react with 3,3‐dimethylbut‐1‐ene in the presence of Wilkinson catalyst [RhCl(PPh3)3] to give the corresponding alkylated products along with unusually isomerized products. © 2002 Wiley Periodicals, Inc. Heteroatom Chem 13:346–350, 2002; Published online in Wiley Interscience (www.interscience.wiley.com). DOI 10.1002/hc.10045  相似文献   

17.
2‐X‐1,3,2‐diazaarsolenes and 2‐X‐1,3,2‐ stibolenes (X = Cl, Br) were prepared from appropriate α‐amino‐aldimine precursors via transamination with ClSb(NMe2)2 or via base‐induced dehydrohalogenation with EX3 (E = As, Sb). The products were further converted into 2‐iodo‐derivatives via halide exchange with Me3SiI, or into 1,3,2‐diazaarsolenium or 1,3,2‐stibolenium salts via halide abstraction using E′X3 (E′ = Al, Ga, Sb) or Me3SiOTf. All compounds synthesized were characterized by spectroscopic data and several of them by single‐crystal X‐ray diffraction studies. The results of these investigations confirmed that diazaarsolenium or stibolenium cations are stabilized by similar π‐delocalization effects as the corresponding diazaphospholenium cations. 2‐Halogeno‐1,3,2‐diazaarsolenes and 2‐halogeno‐132‐stibolenes are best addressed as molecular species whose covalent E X bonds are as in 2‐chloro‐diazaphospholenes weakened by intramolecular π(C2N2) → σ*(E X) and, in the case of the Sb‐containing heterocycles, inter‐ molecular n(X′) → σ*(E X) hyperconjugation between the σ* (E X) orbital and a lone‐pair of electrons on the halogen atom of a neighboring molecule. Correlation of structural and spectroscopic data and the evaluation of halide transfer reactions allowed to conclude that the extent of E X bond weakening in the 2‐X‐substituted heterocycles decreases and thus the Lewis acidity of the cations increases, with increasing atomic number of the pnicogen atom. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:327–338, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20098  相似文献   

18.
Multicomponent Cu? Cu2O? TiO2 nanojunction systems were successfully synthesized by a mild chemical process, and their structure and composition were thoroughly analyzed by X‐ray diffraction, transmission electron microscopy, field‐emission scanning electron microscopy, and X‐ray photoelectron spectroscopy. The as‐prepared Cu? Cu2O? TiO2 (3 and 9 h) nanojunctions demonstrated higher photocatalytic activities under UV/Vis light irradiation in the process of the degradation of organic compounds than those of the Cu? Cu2O, Cu? TiO2, and Cu2O? TiO2 starting materials. Moreover, time‐resolved photoluminescence spectra demonstrated that the quenching times of electrons and holes in Cu? Cu2O? TiO2 (3 h) is higher than that of Cu? Cu2O? TiO2 (9 h); this leads to a better photocatalytic performance of Cu? Cu2O? TiO2 (3 h). The improvement in photodegradation activity and electron–hole separation of Cu? Cu2O? TiO2 (3 h) can be ascribed to the rational coupling of components and dimensional control. Meanwhile, an unusual electron–hole transmission pathway for photocatalytic reactions over Cu? Cu2O? TiO2 nanojunctions was also identified.  相似文献   

19.
Relativity matters: Calculations of NMR shielding tensors and spin–spin coupling constants transmitted through Ir? H???H? N dihydrogen bonds are presented. The picture shows one of the simplified models employed. It is shown that the spin–orbit relativistic effects influence the NMR shielding constants far more than the spin–spin coupling constants.

  相似文献   


20.
The oxidation of H‐cluster in gas phase, and in aqueous enzyme phase, has been investigated by means of quantum mechanics (QM) and combined quantum mechanics–molecular mechanics (QM/MM). Several potential reaction pathways (in the above‐mentioned chemical environments) have been studied, wherein only the aqueous enzyme phase has been found to lead to an inhibited hydroxylated cluster. Specifically, the inhibitory process occurs at the distal iron (Fed) of the catalytic H‐cluster (which isalso the atom involved in H2 synthesis). The processes involved in the H‐cluster oxidative pathways are O2 binding, e? transfer, protonation, and H2O removal. We found that oxygen binding is nonspontaneous in gas phase, and spontaneous for aqueous enzyme phase where both Fe atoms have oxidation state II; however, it is spontaneous for the partially oxidized and reduced clusters in both phases. Hence, in the protein environment the hydroxylated H‐cluster is obtained by means of completely exergonic reaction pathway starting with proton transfer. A unifying endeavor has been carried out for the purpose of understanding the thermodynamic results vis‐à‐vis several other performed electronic structural methods, such as frontier molecular orbitals (FMO), natural bond orbital partial charges (NBO), and H‐cluster geometrical analysis. An interesting result of the FMO examination (for gas phase) is that an e? is transferred to LUMOα rather than to SOMOβ, which is unexpected because SOMOβ usually resides in a lower energy rather than LUMOα for open‐shell clusters. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号