首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The interaction between single‐walled carbon nanotubes (SWNTs) and graphene were studied with first‐principles calculations. Both SWNTs and single‐layer graphene (SLG) or double‐layer graphene (DLG) display more remarkable deformations with the increase of SWNT diameter, which implies a stronger interaction between SWNTs and graphene. Besides, in DLG, deformation of the upper‐layer graphene is less than in SLG. Zigzag SWNTs show stronger interactions with SLG than armchair SWNTs, whereas the order is reversed for DLG, which can be interpreted by the mechanical properties of SWNTs and graphene. Density of states and band structures were also studied, and it was found that the interaction between a SWNT and graphene is not strong enough to bring about obvious influence on the electronic structures of SWNTs. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
Herein, we report the fabrication of glycidyl methacrylate (GMA) polymeric conjugates of shortened multi‐walled carbon nanotubes (sMWCNT). The synthesis method involves the attachment of initiator on the surface of nanotubes followed by surface initiated atom transfer radical polymerization (SI‐ATRP) of GMA from the initiator‐bound sMWCNT surface. This is achieved by the procedure consisting of three important steps: introduction of amino groups onto the sMWCNT and attachment of polymerization initiator, 2‐bromo‐2‐methylpropinonyl bromide, and polymerization of GMA. The structure and properties of the resultant polymeric conjugates were characterized by Fourier transform infrared (FT‐IR) spectroscopy, Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X‐ray diffraction (XRD), atomic force microscopy (AFM), transmission electron microscopy (TEM) and SEM. The FT‐IR analysis of polymeric conjugates shows infrared (IR) peaks characteristic of GMA. AFM, TEM and SEM images clearly show the formation of poly(glycidyl methacrylate)(PGMA) polymer on sMWCNT surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The baclofen‐MWCNTs‐Pd nanocatalyst was synthesized through covalent grafting of baclofen molecules onto surface‐modified carbon nanotubes and immobilizing Pd nanoparticles by the baclofen ligands. The chemical structure of the produced nanocatalyst was studied by Raman spectroscopy, Fourier transform‐infrared spectroscopy, energy‐dispersive spectroscopy (EDS), elemental mapping and inductively coupled plasma analysis. Also, its surface morphology was determined using the scanning and transmission electron microscopy techniques. Furthermore, the obtained baclofen‐MWCNTs‐Pd nanocatalyst is demonstrated to exhibit very high activity as a heterogeneous phosphine‐free catalyst in Sonogashira cross‐coupling of aryl halides by giving good to excellent yields of different products. In addition, the nanocatalyst can be reused four times without any significant leaching or loss of activity.  相似文献   

4.
Poly(acryloyl chloride) (PACl) was employed to enhance the surface of multi‐walled carbon nanotubes (MWCNTs). MWCNTs were first acid treated to generate hydroxyl groups on the surface, which was reacted with PACl to obtain an encapsulation. The numerous acryloyl chloride groups on the out layer were esterified with a proper amount of ethylene glycol (EG). Subsequently, 4,4′‐methylenebis (phenylisocyanate) (MDI) and 1,4‐butanediol (BDO) were introduced into the system, and a polyurethane (PU) layer was formed in situ. The formation of PU layers on MWCNTs was confirmed by Fourier transform infrared spectrometer (FTIR) and X‐ray photoelectron spectroscope (XPS). The morphology of encapsulated MWCNTs was observed by transmission electron microscope (TEM) and scanning electron microscope (SEM). Thermo gravimetric analysis (TGA) showed the grafted polymer fraction was up to 90%. On introducing the modified MWCNTs into a PU matrix, an increase in tensile strength by 60.6% and improvement in modulus by 6.3% over neat PU was observed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4857–4865, 2008  相似文献   

5.
A novel molecularly imprinted polymer based on magnetic phenyl‐modified multi‐walled carbon nanotubes was synthesized using curcumin as the template molecule, methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the cross‐linker. The phenyl groups contained in the magnetic imprinted polymers acted as the assisting functional monomer. The magnetic imprinted polymers were characterized by scanning electron microscopy, Fourier‐transform infrared spectroscopy and vibrating sample magnetometry. Adsorption studies demonstrated that the magnetic imprinted polymers possessed excellent selectivity toward curcumin with a maximum capacity of 16.80 mg/g. Combining magnetic extraction and high‐performance liquid chromatography technology, the magnetic imprinted polymer based on magnetic phenyl‐modified multi‐walled carbon nanotubes was applied for the rapid separation and enrichment of curcumin from ginger powder and kiwi fruit root successfully.  相似文献   

6.
Pramipexole drug was attached to the surface of multi‐walled carbon nanotubes (MWCNTs) by reaction of acylated carbon nanotubes with pramipexole for the first time. The modified MWCNTs were characterized using Fourier transform infrared spectroscopy, transmission and scanning electron microscopies and CHNS analysis. The prepared pramipexole–MWCNTs were used for immobilization of palladium nanoparticles as a novel nanocatalyst. After characterization of the final nanocomposite, the pramipexole–MWCNTs/Pd was applied as a novel phosphine‐free recyclable heterogeneous catalyst for Sonogashira reactions. Interestingly, the novel catalyst could be recovered and recycled five times without any significant loss in activity.  相似文献   

7.
Fe3O4 nanoparticles were indirectly implanted onto functionalized multi‐walled carbon nanotubes (MWCNTs) leading to a nanocomposite with stronger magnetic performance. Poly(acrylic acid) (PAA) oligomer was first reacted with hydroxyl‐functionalized MWCNTs (MWCNTs‐OH) forming PAA‐grafted MWCNTs (PAA‐g‐MWCNTs). Subsequently, Fe3O4 nanoparticles were attached onto the surface of PAA‐g‐MWCNTs through an amidation reaction between the amino groups on the surface of Fe3O4 nanoparticles and the carboxyl groups of PAA. Fourier transform infrared spectra confirmed that the Fe3O4 nanoparticles and PAA‐g‐MWCNTs were indeed chemically linked. The morphology of the nanocomposites was characterized using transmission electron microscope (TEM). The surface and bulk structure of the nanocomposites were examined using X‐ray diffraction, X‐ray photoelectron spectrometer (XPS), and thermogravimetric analysis (TGA). The magnetic performance was characterized by vibrating sample magnetometer (VSM) and the magnetic saturation value of the magnetic nanocomposites was 47 emu g?1. The resulting products could be separated from deionized water under an external magnetic field within about 15 s. Finally, the magnetorheological (MR) performances of the synthesized magnetic nanocomposites and pure Fe3O4 nanoparticles were examined using a rotational rheometer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

8.
A series of poly(ethylene terephthalate)/multi‐walled carbon nanotubes (PET/MWCNTs) nanocomposites were prepared by in situ polymerization using different amounts of multi‐walled carbon nanotubes (MWCNTs). The polymerization of poly(ethylene terephthalate) (PET) was carried out by the two‐stage melt polycondensation method. The intrinsic viscosity (IV) of the composites is ranged between 0.31 and 0.63 dL/g depending on the concentration of the MWCNTs. A decrease of IV was found by increasing MWCNTs content. This is due to the reactions taking place between the two components leading to branched and crosslinked macromolecules. These reactions are, mainly, responsible for thermal behavior of nanocomposites. The melting point of the nanocomposites was shifted to slightly higher temperatures by the addition till 0.55 wt % of MWCNTs while for higher concentration was reduced. The degree of crystallinity in all nanocomposites was, also, reduced by increasing MWCNTs amount. However, from crystallization temperature, it was found that MWCNTs till 1 wt % can enhance the crystallization rate of PET, whereas at higher content (2 wt %), the trend is the opposite due to the formation of crosslinked macromolecules. From the extended crystallization analysis, it was proved that MWCNTs act as nucleating agents for PET crystallization. Additionally, the crystallization mechanism due to the existence of MWCNT becomes more complicated because two mechanisms with different activation energies are taking place in the different degrees of crystallization, depending on the percentage of MWCNT. The effect of molecular weight also plays an important role. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1452–1466, 2009  相似文献   

9.
In this study, the effects of crystallization conditions (cooling rate and end temperature of cooling) on crystallization behavior and polymorphic composition of isotactic polypropylene/multi‐walled carbon nanotubes (iPP/MWCNTs) composites nucleated with different concentrations of β‐nucleating agent (tradename TMB‐5) were investigated by differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD) and scanning electronic microscopy (SEM). The results of DSC, WAXD and SEM revealed that the addition of MWCNTs and TMB‐5 evidently elevates crystallization temperatures and significantly decreases the crystal sizes of iPP. Because of the competition between α‐nucleation (provided by MWCNTs) and β‐nucleation (induced by TMB‐5), the β‐phase crystallization takes place only when 0.15 wt% and higher concentration of TMB‐5 is added. Non‐isothermal crystallization kinetics study showed that the crystallization activation energy ΔE of β‐nucleated iPP/MWCNTs composites is obviously higher than that of pure iPP, which slightly increases with the increase of TMB‐5 concentration, accompanying with the transition of its polymorphic crystallization behavior. The results of non‐isothermal crystallization and melting behavior suggested that the cooling rate and end temperature of cooling (Tend) are important factors in determining the proportion and thermal stability of β‐phase: Lower cooling rate favors the formation of less amount of β‐phase with higher thermal stability, while higher cooling rate encourages the formation of higher proportion of β‐phase with lower thermal stability. The Tend = 100°C can eliminate the β–α recrystallization during the subsequent heating and therefore enhance the thermal stability of the β‐phase. By properly selecting TMB‐5 concentration, cooling rate and Tend, high β‐phase proportion of 88.9% of the sample was obtained. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
The reversible nonlinear conduction (RNC) in of high‐density polyethylene/acetylene carbon black composites with different degrees of crosslinking was studied above room temperature and below the melting point of high‐density polyethylene (HDPE). The experimental current density‐electric field strength curves can be overlapped onto a master curve, suggesting that the microscopic mechanisms for the appearance of RNC exist regardless of the ambient temperature and the crosslinking degree of the HDPE matrix. The relationship between the crossover current density and the linear conductivity can be explained in the framework of the dynamic random‐resistor‐network model. According to these results, two electron‐tunneling models are suggested to interpret the microscopic conduction behavior. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1212–1217, 2004  相似文献   

11.
Multi‐walled carbon (MWCNT) and tungsten disulfide (INT‐WS2) nanotubes are materials with excellent mechanical properties, high electrical and thermal conductivity. These special properties make them excellent candidates for high strength and electrically conductive polymer nanocomposite applications. In this work, the possibility of the improvement of mechanical, thermal and electrical properties of poly(trimethylene terephthalate) (PTT) by the introduction of MWCNT and INT‐WS2 nanotubes was investigated. The PTT nanocomposites with low loading of nanotubes were prepared by in situ polymerization method. Analysis of the nanocomposites' morphology carried out by SEM and TEM has confirmed that well‐dispersed nanotubes in the PTT matrix were obtained at low loading (<0.5 wt%). Thermal and thermo‐oxidative stability of nanocomposites was not affected by the presence of nanotubes in PTT matrix. Loading with INT‐WS2 up to 0.5 wt% was insufficient to ensure electrical conductivity of PTT nanocomposite films. In the case of nanocomposites filled with MWCNT, it was found that nanotube incorporation leads to increase of electrical conductivity of PTT films by 10 orders of magnitude, approaching a value of 10?3 S/cm at loading of 0.3 wt%. Tensile properties of amorphous and semicrystalline (annealed samples) nanocomposites were affected by the presence of nanotubes. Moreover, the increase in the brittleness of semicrystalline nanocomposites with the increase in MWCNT loading was observed, while the nanocomposites filled with INT‐WS2 were less brittle than neat PTT. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Multi‐walled carbon nanotube/Poly(butylene terephthalate) nanocomposites (PCTs) were prepared by melt compounding. The microstructure of PCTs was investigated using transmission electron micrographs and Fourier transform infra‐red spectrometer. The linear and nonlinear as well as transient rheological properties of PCTs were characterized by the parallel plate rheometer. The results reveal that the surface modification can improve the dispersion state of nanotube in matrix. PCTs present a low percolation threshold of about 1–2 wt % in contrast to that of Poly‐(butylene terephthalate)/clay nanocomposites. The network structure is very sensitive to both the quiescent and large amplitude oscillatory shear deformation, and is also to the temperature, which makes the principle of time‐temperature superposition (TTS) be valid on PCTs only in a very restricted temperature range. The stress overshoots to the reverse flow are strongly dependent on both the rest time and shear rate but show a strain‐scaling response to the startup of steady shear, indicating that the broken network can reorganize even under quiescent condition. The nanotube may experience the long‐range, more or less order during annealing process. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2239–2251, 2007  相似文献   

13.
Grafting of aldehyde structures to single‐walled carbon nanotubes (SWNTs) has been carried out to endow the nanotubes with appropriate wettability. The results of Fourier transform infrared (FTIR) spectroscopy, ultraviolin‐visible‐near infrared (UV‐VIS‐NIR) spectroscopy, and Raman spectroscopy provide the supporting evidence of aldehyde structures covalently attached to SWNTs. The improved wettability of aldehyde‐functionalized SWNTs (f‐SWNTs) was demonstrated by their good dispersion in organic medium, namely, ethanol and phenolic resin. The prospective covalent bonding between aldehyde structures on the surfaces of f‐SWNTs and phenolic resin makes it possible to prepare an integrated composite with the enhanced‐interfacial adhesion. The f‐SWNT composites, therefore, show much higher average values of dσ/dWCNT and dE/dWCNT (i.e., tensile strength and Young's modulus per unit weight fraction) compared with the composites filled with pristine SWNTs or MWNTs. The respective maxima are 9680 MPa and 320 GPa. It is thus feasible for f‐SWNTs to prepare the moderately enhanced but lightweight phenolic composites. Furthermore, the incorporation of f‐SWNTs does not limit the application of phenolic resin as insulation material. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6135–6144, 2009  相似文献   

14.
A multi‐pesticide residue determination method based on a modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) method using multiwalled carbon nanotubes as reversed‐dispersive solid‐phase extraction material was validated in 37 representative pesticides in tobacco. Determination was performed using liquid chromatography with tandem mass spectrometry in multiple reaction monitoring mode. Three major types of tobacco leaf samples, namely, flue‐cured, burley, and oriental tobacco were studied and compared. Three factors (extraction time, external diameter, and amount of extraction material used) that could affect the performance of multi‐walled carbon nanotubes were investigated. Optimization of sample preparation and determination allowed recoveries between 70.8 and 114.8% for all 37 pesticides with < 20.0% relative standard deviations at three spiking levels of 20, 50, and 200 μg/kg. The limits of quantification and limits of detection for the 37 pesticides ranged within 0.46–28.57 and 0.14–8.57 μg/kg at a signal‐to‐noise ratio of 10 and 3, respectively.  相似文献   

15.
The well dispersion of functionalized multi‐walled carbon nanotube (f‐MWCNT) in nylon 6 matrix was prepared by solution mixing techniques. The isothermal and nonisothermal crystallization kinetics of nylon 6 and nylon 6/f‐MWCNT nanocomposites were studied by differential scanning calorimetry (DSC), X‐ray diffraction and polarized optical microscopy analysis. DSC isothermal results revealed that the activation energy of nylon 6 extensively decreased by adding 1 wt % f‐MWCNT into nylon 6, suggesting that the addition of small amount of f‐MWCNT probably induces the heterogeneous nucleation. Nevertheless, the addition of more f‐MWCNT into nylon 6 matrix reduced the transportation ability of polymer chains during crystallization process and thus increased the activation energy. The nonisothermal crystallization of nylon 6/f‐MWCNT nanocomposites was also discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 158–169, 2008  相似文献   

16.
Shape memory composites of trans‐1,4‐polyisoprene (TPI) and low‐density polyethylene (LDPE) with easily achievable transition temperatures were prepared by a simple physical blending method. Carbon nanotubes (CNTs) were introduced to improve the mechanical properties of the TPI/LDPE composites. The mechanical, cure, thermal, and shape memory properties of the TPI/LDPE/CNTs composites were investigated in this study. In these composites, the cross‐linked network generated in both the TPI and LDPE portions acted as a fixed domain, while the crystalline regions of the TPI and LDPE portions acted as a domain of reversible shape memory behavior. We found that CNTs acted as not only reinforced fillers but also nucleation agents, which improved the crystalline degree of the TPI and LDPE portions of the composites. Compared with the properties at the other CNT doses, the mechanical properties of the TPI/LDPE composites when the CNT dose was 1 phr were improved significantly, showing excellent shape memory properties (Rf = 97.85%, Rr = 95.70%).  相似文献   

17.
Carboxyl multi‐wall carbon nanotubes (MWNTs‐COOH) were grafted by diaminopropyl terminated dimethylpolysiloxane (DPD) to the modified MWNTs‐COOH (MWNTs‐DPD). The surface structure and thermal stability of MWNTs‐DPD and MWNTs‐COOH were characterized using Fourier‐transform infrared spectroscopy, X‐ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). Then PC/MWNTs‐COOH and PC/MWNTs‐DPD nanocomposites were prepared by the solution method and melt extrusion method. The mechanical properties, transmission electron microscopy (TEM), TGA, limiting oxygen index (LOI), UL‐94 test, and permittivity test were used to evaluate the properties of the composites. The results showed that the MWNTs‐DPD was dispersed well in the PC matrix, and its tensile strength, flexual strength, flexural modulus, and flame retardancy were better than that of PC/MWNTs‐COOH. MWNTs‐DPD can improve the electrical properties of the nanocomposites at the low loading in PC. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
DC conductivity of conjugated polymer‐single‐walled carbon nanotube (SWNT) composite films has been measured for different SWNT concentrations. The composite was prepared by dispersing SWNTs in the poly (3‐octylthiophene), P3OT matrix already dissolved in xylene. The conductivity of the composite films showed a rapid increase as the SWNT concentration increases beyond a certain value. This behavior is explained in terms of percolating paths provided by the SWNTs in the volume of polymer matrix. To investigate the effect of length of nanotubes on the percolation conductivity, different SWNT samples were employed with similar diameter but varying tube lengths. It was found that the conductivity of the composite films is strongly dominated by the length of the nanotubes. Lower percolation limit and high conductivity value of composite films is observed for longer nanotubes. Furthermore, the conductivity is observed to be dependent on the size of the host polymer molecule also. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 89–95, 2010  相似文献   

19.
A new type of water‐soluble single‐walled carbon nanotubes (SWNTs) was synthesized by grafting of dodecyl quaternary ammonium bromides. Results of Fourier transform infrared and proton nuclear magnetic resonance spectroscopic analyses confirmed the successful synthesis. Water‐soluble performance of functionalized SWNTs, i.e. N+‐SWNTs, has been studied in terms of solubility and stability. It was found that the solubility could reach up to 110 mg.l?1 and as‐prepared solution possesses a good stability over the PH range of 6.87–11.25. Based on these properties, one of the important applications of N+‐SWNTs was demonstrated to prepare poly(vinyl alcohol) (PVA) composites. Owing to critical issues of uniform dispersion and enhanced interfacial PVA‐nanotube interaction having been simultaneously resolved to a reasonable extent, the composite film with only 0.3 wt% N+‐SWNTs showed an increase of 33% and 32% in tensile strength and Young's modulus, respectively, over neat PVA film. Moreover, a high optical quality and slightly increased glass transition temperature were also observed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The effect of compounding procedure on morphology and crystallization behavior of isotactic polypropylene/high‐density polyethylene/carbon black (iPP/HDPE/CB) composite was investigated. iPP/HDPE/CB composites were prepared by four compounding procedures (A: iPP + HDPE + CB; B: iPP/HDPE + CB; C: HDPE/CB + iPP; D: iPP/CB + HDPE). Scanning electron microscopy observation showed that CB particles are mainly distributed in HDPE in all composites, and the phase morphology of composites was obviously affected by a compounding procedure. The size of the HDPE/CB domains in the composites prepared by procedures A and D decreased with the increase in CB content, whereas that of HDPE/CB in the composites prepared by procedures B and C rarely changed with the increase in CB content. The crystallization behaviors of the composites were significantly affected by their phase morphology, which resulted from the variation of compounding procedure. The isothermal crystallization rate of iPP in the composites prepared by procedures A and D was obviously increased, which may originate from the small HDPE/CB droplets dispersed in the iPP phase. The non‐isothermal crystallization curves of composites prepared by procedure D represented two peaks because the iPP component in these composites had the fastest crystallization rate, whereas the curves of composites prepared by other compounding sequences only exhibited one peak. Moreover, the crystallinity of HDPE almost increased by one time with the incorporation of only 1 phr CB because the CB particles selectively located in the HDPE phase, and the crystallinity of HDPE decreased with the further increase of CB content because of the strong restriction of CB on the HDPE chains. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号