首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using diethylene glycol (DegOH) as non‐solvent additive (NSA) and N, N‐dimethylacetamide (DMAc) as solvent (S), polyethersulfone (PES) flat sheet membranes were prepared via immersion precipitation combined with the vapor induced phase separation (VIPS) process. Light transmittance was used to follow the precipitation rate during the immersion process as well as during the VIPS stage. As the addition of the NSA, the viscosity of casting solutions increased, which led to a slow precipitation rate. Though the precipitation rate decreased, the instantaneous demixing type was maintained. High flux membranes were obtained only at a high mass ratio of NSA/S; producing membranes had cellular pores on the top surface and sponge‐like structure on cross section. The VIPS process prior to immersion precipitation was important for the formation of cellular pore on the surface. With the increase in exposure time, the liquid–liquid phase separation took place on the surface of casting solution; nucleation and growth induced the formation of cellular pore on the top surface. Coagulation bath temperature also had large effect on the precipitation rate; high temperature on coagulation bath mainly accelerated the transfer of solvent and non‐solvent. Higher flux membrane with a porous skin layer could be obtained at a high coagulation bath temperature, but at the same time the mechanism properties were weakened. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
肖长发 《高分子科学》2010,28(5):721-729
<正>The asymmetric polyamide-6(PA6) membranes were prepared by thermally induced phase separation.From the scanning electron microscopy(SEM) images,it is observed that with the increase of silicon dioxide(SiO_2) content the structure of obtained membranes gradually varied from cellular structure to large ball-shaped cluster aggregates. Subsequently,with the addition of SiO_2,pure water flux increased first and then decreased,while rejection showed the opposite trend.Besides,raising the coagulation bath temperature was favorable to increase pure water flux.Consequently, different membrane morphologies and performance were obtained by changing SiO_2 content and coagulation bath temperature.  相似文献   

3.
Polyethersulfone (PES) membrane, one of the most important polymeric materials because of its good chemical resistance, thermal stability, mechanical, and film‐forming properties, has already been used in hemodialysis, tissue engineering, and artificial organs. In order to improve the blood compatibility of PES membrane, many amphiphilic block copolymers have been synthesized and used as additives for surface modification. The object of this study is to develop a hydrophilic PES membrane by blending a comblike amphiphilic block copolymer poly (vinyl pyrrolidone)‐block‐poly [acrylate‐graft‐poly (methyl methacrylate)]‐block‐poly‐(vinyl pyrrolidone) [PVP‐b‐P (AE‐g‐PMMA)‐b‐PVP] synthesized by RAFT polymerization. The cytocompatibility performance of PVP‐b‐P (AE‐g‐PMMA)‐b‐PVP modified PES membrane was evaluated, which showed better cytocompatibility compared with that of pristine PES membrane. Endothelial cells cultured on the modified membranes present improved growth in terms of scanning electron microscope observation, MTT assay, and confocal laser scanning microscope observation. These results indicate that the modified membrane has great potential application in blood‐contact fields such as hemodialysis and bio‐artificial liver supports. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
In this study, effects of methanol, ethanol and 1‐propanol as variable nonsolvent additives (NSAs) on the morphology and performance of flat sheet asymmetric polyethersulfone (PES) membranes were investigated. The membranes were prepared from PES/Polyvinylpyrrolidone (PVP)/N‐methyl‐2‐pyrrolidone (NMP) system via phase inversion. The obtained results indicate that with the addition of NSAs to the casting solution, the membrane morphology changes slowly from macrovoids to an asymmetric structure with finger‐like pores. By increasing the NSAs concentrations in the casting solution and decreasing their polarities, the membrane structure changes from finger‐like pores to sponge. The AFM and SEM images reveal that addition of NSA to the casting solution decreases the pore size of the prepared membranes and reduces the pure water flux and BSA solution flux, while increasing the protein rejection. Surface analysis of the membranes showed that mean pore size and surface porosity of the prepared membranes with NSAs in the casting solution are smaller compared with those of the membrane prepared with no NSA. Pure water flux and BSA solution flux through the membranes decrease and BSA rejection increases with increase in the concentration of NSAs and decrease in their polarity. Finally, it can be concluded that the Tg values of the PES membranes increase by addition of NSAs to the casting solution. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Cellulose acetate (CA) microfiltration membranes were prepared by two‐stage vapor‐induced phase separation (VIPS) and immersion precipitation. To improve the hydrophilicity and permeability of the membranes at low operating pressures, plasma‐treated natural zeolite was incorporated into the membranes. A response surface methodology based on the three‐level central composite design (CCD) was used to model and optimize the casting solution composition of the membranes with the aim of maximizing membranes permeability. Three independent variables for CCD optimization were concentration of CA, polyvinylpyrrolidone (PVP) pore former, and plasma‐treated zeolite additive. The results showed that a second‐order polynomial model could properly predict the response (pure water flux) at any input variable values with a satisfying determination coefficient (R2) of 0.954. Also, analysis of variance (ANOVA) confirmed the adequacy of the obtained model. The permeability of the prepared membranes increased by increasing zeolite loading from 0.10 to 0.50 wt%, which was related to the membranes morphology and porosity and confirmed by scanning electron microscopy (SEM) images. Pure water flux of the membranes decreased by increasing CA concentration while an optimum PVP amount was required to reach the maximum flux. The result of the bubble point analysis well matched with surface SEM images of the membranes and permeability trend predicted by CCD model. Also, the prepared CA membranes with different compositions showed no toxicity for mouse L929 fibroblast, which indicated their nontoxic and biocompatible nature.  相似文献   

6.
This study describes the preparation of polyethersulfone (PES)/layered silicate nanocomposites (PLSNs) by mixing PES polymer chain into organically‐modified layered silicate in 1‐methyl‐2‐pyrrolidinone (NMP) solution. Both X‐ray diffraction data and transmission electron microscopy images of PLSNs indicate that the silicate layers were almost exfoliated and randomly distributed into the PES matrix. The mechanical and barrier properties of PLSNs show remarkable enhancement in the storage modulus and water/oxygen permeability when compared with that of neat PES matrix. Surfaces modification of PES and PLSN films with various treated times, system pressures, and radio frequency (RF) powers were performed using a mixture of oxygen (O2) and nitrogen (N2) plasmas. The topographical and physical properties of plasma‐modified PES and PLSN surfaces were investigated using scanning probe microscopy (SPM), contact‐angle measurements, and X‐ray photoelectron spectroscopy (XPS). These results indicate that the surface roughness of PLSNs with the same condition of plasma modification is lower than that of neat PES matrix and is probably due to the increase of stiffness with the presence of inorganic layered silicates in PES matrix. The surface properties of the PES and PLSNs are also changed from hydrophobic to hydrophilic. The XPS spectra suggest that the exposure of the PES and PLSNs to the plasmas led to the combination of etching reactions of polymer surface initiated by plasma and the following addition reactions of new oxygen‐ and nitrogen‐containing functional groups onto polymer surfaces to change their surface properties. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3185–3194, 2006  相似文献   

7.
Polysulfone (PS) and polyethersulfone (PES) ultrafiltration membranes were manufactured from a casting solution of the polymer, polyvinylpyrrolidone (PVP) in various solvents [N,N‐dimethylacetamide (DMAc), N,N‐dimethylformamide (DMF) and 1‐methyl‐2‐pyrrolidone (NMP)] by immersing the prepared films in different non‐solvents [water, 2‐butanol, mixture of water and 2‐butanol, mixture of water and 2‐propanol (IPA) and mixture of water and 1‐butanol]. The influences of various solvents and non‐solvents on morphology and performance of the prepared membranes were analyzed by scanning electron microscopy (SEM) and separation experiments using milk as the feed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
成膜条件对聚醚砜超滤膜性能和结构的影响   总被引:4,自引:2,他引:2  
以聚醚砜(PES)为膜材,聚乙二醇600(PEG600)为添加剂,N,N-二甲基甲酰胺(DMF)为溶剂,纯水为凝固浴,用相转化法制备聚醚砜超滤膜.详细探讨了PES浓度、添加剂含量、凝固浴温度对膜性能和结构的影响规律,确定了制备高水通量、高截留率聚醚砜超滤膜的最佳工艺条件.  相似文献   

9.
In this study, random terpolymers of methoxy poly(ethylene glycol)‐poly(sodium styrene sulfonate‐co‐methyl methacrylate) (MPEG‐P(SSNa‐co‐MMA)) integrated with antifouling and anticoagulant properties were synthesized by atom transfer radical polymerization (ATRP) for the first time and confirmed by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and gel permeation chromatography (GPC). The terpolymers with desired antifouling and anticoagulant segments were then used as amphiphilic additives to modify polyethersulfone membranes by an engineering blended approach. Water contact angle (WCA) results indicated that the surface hydrophilicity of the modified membranes enhanced. Protein ultrafiltration experiments showed that the antifouling ability of the modified membranes increased. In addition, the modified membranes showed decreased protein adsorption (bovine serum albumin, BSA), suppressed platelet adhesion, and prolonged activated partial thromboplastin time (APTT). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A novel class of high‐flux and low‐fouling thin‐film nanofibrous composite (TFNC) membranes, containing a thin hydrophilic top‐layer coating, a nanofibrous mid‐layer scaffold and a non‐woven microfibrous support, has been demonstrated for nanofiltration (NF) applications. In this study, the issues related to the design and fabrication of a polyethersulfone (PES) electrospun nanofibrous scaffold for TFNC NF membranes were investigated. These issues included the influence of solvent mixture ratio, solute concentration, additives, relative humidity (RH), and solution flow rate on the morphology of an electrospun PES nanofibrous scaffold, the distribution of fiber diameter, the adhesion between the PES scaffold and a typical poly(ethylene terephthalate) (PET) non‐woven support, as well as the tensile properties of the nanofibrous PES/non‐woven PET composite substrates. Uniform and thin nanofibrous PES scaffolds with strong adhesion to the nanofiber‐PET non‐woven are several of the key parameters to optimize the NF performance of TFNC membranes. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2288–2300, 2009  相似文献   

11.
We have studied the morphologies and crystalline forms of polyvinylidene fluoride (PVDF) membranes separately prepared in four different diluents bearing >C?O groups, namely 1,2‐propylene glycol carbonate (PGC), dimethyl phthalate (DMP), diphenyl ketone (DPK), and dibutyl phthalate (DBP), by the thermally induced phase separation (TIPS) method. The permittivities of the diluents and PVDF were measured to compare the different PVDF–diluent systems. The results showed the permittivity of PGC to be much greater than that of PVDF, and those of DMP and DBP to be lower than that of PVDF. The permittivity difference between DPK and PVDF was not apparent above 120 °C. On cooling mixtures with a PVDF concentration of 10 wt %, PVDF crystallization was observed in the PVDF–DMP, PVDF–DBP, and PVDF–PGC systems, while liquid–liquid phase separation occurred in the PVDF–DPK system. A cross‐section of the PVDF–PGC membrane presented smooth PVDF particles in the β‐phase crystalline form. Those of the PVDF–DMP and PVDF–DBP membranes presented PVDF particles consisting of a fibrillar network in the α‐phase. The PVDF–DPK membrane preferentially adopted an α‐phase bicontinuous channel structure. When the concentration of PVDF was 60 wt %, the cross‐sections of the above four membranes revealed PVDF polyhedra, among which the PVDF–DMP, PVDF–DBP, and PVDF–DPK membranes retained the α‐phase crystalline form, and the diffraction peak of the α‐phase became visible in the X‐ray diffraction (XRD) spectrum of the PVDF–PGC membrane. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

12.
Hollow spheres of aromatic polyamide are obtained by the reaction‐induced phase separation during polymerization of 5‐hydroxyisophthalic acid and 1,4‐phenylene diamine in an aromatic solvent at a concentration of 1–2% at 320 °C without stirring. The hollow sphere has a dimple hole and the diameters of the hollow spheres are 3–4 μm. The droplets are initially generated via liquid–liquid phase separation and then rigid cross‐linked network structure formed the rigid skin layer on the surface of the droplets. The solidification of the droplets occurred owing to the further polymerization in them with maintaining the morphology to form the hollow spheres. The hollow spheres exhibit outstanding thermal stability. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

13.
3‐Hydroxy‐N,N‐diethylaniline (HDEA) as a tertiary aromatic amine was introduced onto the surface of chloromethylated polysulfone (CMPSF) microfiltration membrane through modification reaction, resulting in the modified membrane PSF‐DEA. A redox surface‐initiating system (DEA/APS) was constituted by the bonded tertiary aromatic amine group DEA and ammonium persulfate (APS) in aqueous solution, and so, the free radicals formed on the membrane initiated sodium p‐styrenesulfonate (SSS) as an anionic monomer to produce graft polymerization, getting the grafting‐type composite microfiltration membrane, PSF‐g‐PSSS membrane. Subsequently, the adsorption property of PSF‐g‐PSSS membrane for three heavy metal ions, Pb2+, Zn2+, and Hg2+ ions, was fully examined, and the rejection performance of PSF‐g‐PSSS membrane towards the three heavy metal ions was emphatically evaluated via permeation experiments. The experimental results show that by the initiating of the surface‐initiating system of DEA/APS, the graft polymerization can smoothly be carried out under mild conditions. PSF‐g‐PSSS membrane as a functional microfiltration membrane has strong adsorption ability for heavy metal ions by right of strong electrostatic interaction (or ion exchange action) between the anionic sulfonate ions on the membrane and heavy metal ions. The order of adsorption capacity is Pb2+ > Zn2+ > Hg2+, and the adsorption capacity of Pb2+ ion gets up to 2.18 μmol/cm2. As the volume of permeation solutions, in which the concentrations of the three metal ions are 0.2 mmol/L, are in a range of 50 to 70 mL, the rejection rate of PSF‐g‐PSSS membrane for the three heavy metal ions can reach a level of 95%, displaying a fine rejection and removing performance towards heavy metal ions.  相似文献   

14.
Polyethersulfone (PES) and poly(1‐vinylpyrrolidone) (PVP) were used to prepare ultrafiltration membranes with grafted Fe3O4 magnetic nanoparticles (PVP‐g‐Fe3O4@SiO2). The structure of synthesized PVP‐g‐Fe3O4@SiO2 was confirmed by FT‐IR and SEM analysis. Physical properties of blend membranes such as thermal resistance, Tensile strength, water uptake, and hydrophilicity were also investigated. Blended membranes of PES/PVP‐g‐Fe3O4@SiO2 have exhibited higher thermal resistance due to increasing the modified nanoparticle content. The hydrophilicity of the synthesized PES/PVP‐g‐Fe3O4@SiO2 membranes also improved by increasing the PVP‐g‐Fe3O4@SiO2 content. As expected, increasing the hydrophilicity of blended membrane, caused enhancement of fouling resistance in membranes. Results showed that the content of PVP‐g‐Fe3O4@SiO2 has different effects on the properties of synthesized composite membranes. Despite increasing the content of PVP‐g‐Fe3O4@SiO2 has a negative effect on elongation, positive effects on maximum stress was observed. Moreover, the water uptake of synthesized membranes was significantly enhanced in comparison to other similar studies.  相似文献   

15.
16.
Polyethylene/TiO2 membranes were fabricated via thermally induced phase separation (TIPS) method. A set of characterization tests including FE‐SEM, EDX, XRD, DSC, TGA, DMA, mechanical test and relative pure water flux for characterization of membranes were carried out to investigate the effect of TiO2 nanoparticles on membrane properties. The results of EDX, XRD and TGA analyses confirmed the presence of TiO2 nanoparticles in the polymer matrix. The results of DSC analysis revealed that the melting point as well as the crystallinity of the membranes increased slightly with increasing TiO2 content. However, the glass transition temperature of the membranes was not affected by the presence of particles. Addition of nanoparticles also increased storage modulus, loss modulus and tensile strength at break of the membranes due to the stiffness improvement effect of inorganic TiO2. Finally, it was observed that incorporation of the nanoparticles improved pure water flux of the membranes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
《先进技术聚合物》2018,29(2):989-1001
Herein, a novel method was reported for the use of polyethersulfone (PES) membranes in catalytic reactions with an enhanced distribution and superior catalytic activity of palladium nanoparticles immobilized on the surface of the membranes. For this purpose, the surface of PES membrane was treated with plasma, and subsequently, the consequent oxygen‐containing functional groups were reacted with APTES and 2‐pyridinecarbaldehyde, respectively, to provide sites by which Pd could form complexes. The mean roughness as well as the surface and cross‐sectional morphology were investigated using atomic force microscopy, scanning electron microscopy (SEM), and field‐emission scanning electron microscopy (FESEM), respectively. Furthermore, SEM mapping was used to examine the palladium distribution on the surface of the membranes. Further characterizations of as‐prepared Pd‐loaded PES membranes conducted using EDX, ICP, and XRD analyses. The reduction of p‐nitrophenol to p‐aminophenol was also used as a model reaction to investigate the membranes' performance. The results, analyzed using UV‐Vis instrument, demonstrated that the complete reduction of p‐nitrophenol was achieved at a short time via Pd‐chelated plasma‐treated membrane. Furthermore, the rod‐like and sphere‐like structure of Pd was acquired as a result of palladium chelating with nitrogen‐containing ligands, produced through the reaction between 2‐pyridinecarbaldehyde and (3‐Aminopropyl)triethoxysilane. It was observed that the rod‐like structure of Pd exhibited a trivial catalytic activity in reduction of p‐nitrophenol to p‐aminophenol in contrast with the sphere‐like structure, nonetheless.  相似文献   

18.
Phase separation of poly(acrylonitrile–co-methacrylic acid) in compressed liquid CO2 resulted in formation of a porous imprinted membrane which preferentially adsorbed uracil (URA). The cross-section of the membrane was observed by SEM, which revealed its porous structure. The mechanical strength of the membrane indicated formation of a rigid matrix with high tensile strength (4.4 N mm−2). The imprinted membranes bound highly selectively to URA (12.8 μmol g−1) but binding to dimethyluracil (DMURA), thymine, and cytosine was less (0.7, 0.8, and 0.9 μmol g−1, respectively). When DMURA was similarly used to prepare an imprinted membrane in liquid CO2 there was less binding of DMURA to the imprinted membrane obtained. The URA-imprinted membranes were evaluated by IR spectroscopy before and after URA extraction. The results indicated that hydrogen bonding was the mechanism of binding of URA to the imprinted membrane. Competitive binding studies were performed with binary mixtures of URA and its analogues. The URA-imprinted membrane enabled good separation of URA from cytosine, DMURA, and thymine, with separation factors of 3.0, 3.8, and 2.5, respectively. It was confirmed that the compressed liquid CO2 contributed to efficient formation of template substrate sites in the URA-imprinted membrane.  相似文献   

19.
In present research, novel asymmetric polysulfone (PSF) membranes with high hydrophilicity and noticeable rejection of arsenic, as one of the major environmental problems, were prepared from PSF/Brij‐58/NMP (1‐methyl‐2‐pyrrolidone) system via immersion precipitation. Pure water was used as gelation media. The variation effect of coagulation bath temperature (CBT) and addition of Brij‐58 on morphology, wettabiliy, pure water permeation flux and rejection of As (III) and As (V), as two dominant states of arsenic in the nature, were studied by scanning electron microscopy, contact angle measuring instrument and experimental setup. The results demonstrated that both hydrophilicity and rejection properties of the prepared membranes were significantly enhanced by small addition of Brij‐58 surfactant in the casting solution along with using the lowest level of CBT. Addition of 4 wt. % of Brij‐58 and using cold coagulation bath resulted in the highest rejection of As (V). Initial increase in Brij‐58 concentration, from 0 wt. % to 2 wt. %, resulted in higher rejection of As (III). However, higher Brij‐58 concentrations than 2 wt. % (increase from 2 wt. % to 6 wt. %) led to lower rejection of As (III). Also, it was found out that addition of Brij‐58 in the casting solution along with increasing the CBT resulted in formation of membranes with high permeability and sub‐layer porosity and thin top layer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
《先进技术聚合物》2018,29(3):1138-1149
Developing polymer catalytic membrane reactors is an aim due to its outstanding advantages. In this paper, a novel catalytic membrane containing palladium‐supported magnetic nanoparticles is introduced. Silica‐iron oxide core shell nanoparticles were first prepared and functionalized by phosphine ionic liquid functionalized poly(ethylene glycol). The modified magnetic nanoparticles were used as support for immobilization of palladium. The final palladium‐immobilized nanoparticles were used as active filler for the preparation of membrane reactor. The prepared membranes were characterized, and their activities were tested in carbon‐carbon bond formation and catalytic reduction. The catalytic membrane showed good performance in the mentioned reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号