首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Dependence on chain length of NMR relaxation times in mixtures of alkanes   总被引:1,自引:0,他引:1  
Many naturally occurring fluids, such as crude oils, consist of a very large number of components. It is often of interest to determine the composition of the fluids in situ. Diffusion coefficients and nuclear magnetic resonance (NMR) relaxation times can be measured in situ and depend on the size of the molecules. It has been shown [D. E. Freed et al., Phys. Rev. Lett. 94, 067602 (2005)] that the diffusion coefficient of each component in a mixture of alkanes follows a scaling law in the chain length of that molecule and in the mean chain length of the mixture, and these relations were used to determine the chain length distribution of crude oils from NMR diffusion measurements. In this paper, the behavior of NMR relaxation times in mixtures of chain molecules is addressed. The author explains why one would expect scaling laws for the transverse and longitudinal relaxation times of mixtures of short chain molecules and mixtures of alkanes, in particular. It is shown how the power law dependence on the chain length can be calculated from the scaling laws for the translational diffusion coefficients. The author fits the literature data for NMR relaxation in binary mixtures of alkanes and finds that its dependence on chain length agrees with the theory. Lastly, it is shown how the scaling laws in the chain length and the mean chain length can be used to determine the chain length distribution in crude oils that are high in saturates. A good fit is obtained between the NMR-derived chain length distributions and the ones from gas chromatography.  相似文献   

3.
Absract We obtain the relaxation times due to interaction with the paramagnetic center and the limiting paramagnetic shifts for signals from proton groups of amino-acid complexes (L-histidine and -alanine) with rare-earth (Pr3+, d3+, Ev3+, Tm3+, Yb3+) in aqueous solutions. The thermodynamic and kinetic parameters of complex-formation reactions are estimated in the temperature region 303–363 K. The data are obtained by analyzing the complete NMR line shape using the spin-density-matrix formalism.Published to initiate discussion.Kuban State University, Krasnodar. Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 27, No. 6, pp. 745–750, November–December, 1991. Original article submitted March 31, 1986.  相似文献   

4.
5.
The 1H and 13C NMR chemical shifts of cis- and trans-protopinium salts were measured and calculated. The calculations of the chemical shifts consisted of conformational analysis, geometry optimization (RHF/6-31G** method) and shielding constants calculations (B3LYP/6-31G** method). Based on the results of the quantum chemical calculations, two sets of experimental chemical shifts were assigned to the particular isomers. According to the experimental results, the trans-isomer is more stable and its population is approximately 68%.  相似文献   

6.
Solid-state nuclear magnetic resonance (CP/MAS 13C NMR) spectroscopy has often been used to study cellulose structure, but some features of the cellulose NMR spectrum are not yet fully understood. One such feature is a doublet around 84 ppm, a signal that has been proposed to originate from C4 atoms at cellulose fibril surfaces. The two peaks yield different T1, differing by approximately a factor of 2 at 75 MHz. In this study, we calculate T1 from C4-H4 vector dynamics obtained from molecular dynamics computer simulations of cellulose I beta-water interfacial systems. Calculated and experimentally obtained T1 values for C4 atoms in surface chains fell within the same order of magnitude, 3-20 s. This means that the applied force field reproduces relevant surface dynamics for the cellulose-water interface sufficiently well. Furthermore, a difference in T1 of about a factor of 2 in the range of Larmor frequencies 25-150 MHz was found for C4 atoms in chains located on top of two different crystallographic planes, namely, (110) and (10). A previously proposed explanation that the C4 peak doublet could derive from surfaces parallel to different crystallographic planes is herewith strengthened by computationally obtained evidence. Another suggested basis for this difference is that the doublet originates from C4 atoms located in surface anhydro-glucose units with hydroxymethyl groups pointing either inward or outward. This was also tested within this study but was found to yield no difference in calculated T1.  相似文献   

7.
Spin-lattice relaxation times (T1) for methyl, methylene, and methine carbons in an amorphous polypropylene have been measured as a function of temperature from 46 to 138°C. The carbons from isotactic sequences characteristically exhibited the longest T1's of those observed. The T1 differences increased with temperature with the largest difference occuring for methine carbons where a 32% difference was observed. Activation energies were determined for the motional processes affecting T1's for isotactic and syndiotactic sequences with essentially no dependence upon configuration noted.  相似文献   

8.
In order to detect small variations in 13C isotopomers concentrations, high sensitivity, accuracy and precision have to be achieved. To assess such criteria, when using 13C NMR, 13C bi-labelled ethanol has been proposed as a molecular probe. Advantage has been taken of the pre-established structural relationship between the peak areas of the 13C NMR spectrum of this molecule, i.e. the ratio of signal areas is set to a fixed value. It is shown that the quality performance, required by quantitative 13C NMR spectroscopy, is not affected by a large reduction of the repetition delay using relaxation reagents.  相似文献   

9.
A combined theoretical and experimental study revealed that the nature of the upfield (shielding) protonation effect in 15N NMR originates in the change of the contribution of the sp2‐hybridized nitrogen lone pair on protonation resulting in a marked shielding of nitrogen of about 100 ppm. On the contrary, for amine‐type nitrogen, protonation of the nitrogen lone pair results in the deshielding protonation effect of about 25 ppm, so that the total deshielding protonation effect of about 10 ppm is due to the interplay of the contributions of adjacent natural bond orbitals. A versatile computational scheme for the calculation of 15N NMR chemical shifts of protonated nitrogen species and their neutral precursors is proposed at the density functional theory level taking into account solvent effects within the supermolecule solvation model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
One-dimensional (1D) exchange NMR experiments can elucidate the geometry, time scale, memory, and heterogeneity of slow molecular motions (1 ms-1 s) in solids. The one-dimensional version of pure-exchange (PUREX) solid-state exchange NMR, which is applied to static samples and uses the chemical shift anisotropy as a probe for molecular motion, is particularly promising and convenient in applications where site resolution is not a problem, i.e., in systems with few chemical sites. In this work, some important aspects of the 1D PUREX experiment applied to systems with complex molecular motions are analyzed. The influence of intermediate-regime (10 micros-1 ms) motions and of the distribution of reorientation angles on the pure-exchange intensity are discussed, together with a simple method for estimating the activation energy of motions occurring with a single correlation time. In addition, it is demonstrated that detailed information on the motional geometry can be obtained from 1D PUREX spectral line shapes. Experiments on a molecular crystal, dimethyl sulfone, confirm the analysis quantitatively. In two amorphous polymers, atactic polypropylene (aPP) and polyisobutylene (PIB), which differ only by one methyl group in the repeat unit, the height of the normalized exchange intensity clearly reveals a striking difference in the width of the distribution of correlation times slightly above the glass transition. The aPP shows the broad distribution and Williams-Landel-Ferry temperature dependence of correlation times typical of polymers and other "fragile" glass formers. In contrast, the dynamics in PIB occur essentially with a single correlation time and exhibits Arrhenius behavior, which is more typical of "strong" glass formers; this is somewhat surprising given the weak intermolecular forces in PIB.  相似文献   

11.
The measurements of proton T1, T2 and diffusion coefficients of CH4 and deuterium T1 in CD4, dissolved in MBBA are reported as a function of the temperature in the nematic and solid phases. Also reported are cw measurements of CH4 in MBBA at 250 MHz which definitely prove that it is oriented. The results are discussed in terms of their relation to previously published cw NMR measurements on these systems.  相似文献   

12.
33S NMR chemical shifts were calculated by the scaled DFT and EMPI approaches for the fluoride, chloride and bromide of trimethylsulfonium ion (1) and S-methyltetrahydrothiophenium ion (2), in addition to the free cations. Experimental values were obtained for the iodides of 1 (delta +48, CS2 = 0 ppm) and 2 (delta +95), and were found to agree with the calculated values well within the standard deviation of 35 ppm (3.5% of the shielding range) established in earlier work for a great variety of sulfur compounds. An earlier literature value of delta +750 for the iodide of 2 is therefore to be replaced. Calculations provide a shift of delta +68 for S-methylthianium ion with equatorial methyl, indicating that the reported value of delta +670 for the iodide is also incorrect.  相似文献   

13.
205Tl longitudinal relaxation rate measurements were performed on several thallium(III) complexes with the composition Tl(OH)n(H2O)6?n(3?n)+ (n = 1,2), Tl(Cl)n(H2O)m?n(3?n)+, Tl(Br)n(H2O)m?n(3?n)+ (m = 6 for n = 1–2, m = 5 for n = 3, m = 4 for n = 4), Tl(CN)n(H2O)m?n(3?n)+ (m = 6 for n = 1–2, m = 4 for n = 3–4) in aqueous solution, at different magnetic fields and temperatures. 13C and 2D isotopic labelling and 1H decoupling experiments showed that the contribution of the dipolar relaxation path is negligible. The less symmetric lower complexes (n < 4) had faster relaxation rate dominantly via chemical shift anisotropy contribution which depended on the applied magnetic field: T1 values are between 20 and 100 ms at 9.4 T and the shift anisotropy is Δσ = 1000–2000 ppm. The tetrahedral complexes, n = 4, relax slower; their T1 is longer than 1 s and the spin–rotation mechanism is probably the dominant relaxation path as showed by a temperature dependence study. In the case of the TlCl4? complex, presumably a trace amount of TlCl52? causes a large CSA contribution, 300 ppm. Since the geometry and the bond length for the complexes in solution are known from EXAFS data, it was possible to establish a correlation between the CSA parameter and the symmetry of the complexes. The relaxation behaviour of the Tl–bromo complexes is not in accordance with any known relaxation mechanism. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
A new method is suggested for the experimental determination of the dependence of the relaxation times on the temperature in dielectrics for which the time–temperature superposition principle is valid. The method makes possible the determination of this dependence for a separate relaxation process (for instance, for the β-relaxation process) over a wide temperature range by means of comparatively simple mathematical operations which are only slightly sensitive to experimental errors. Two or more discharge-current curves, measured with temperatures increasing in an arbitrary way with time, are used for this purpose.  相似文献   

15.
13C, 14N, 15N, 17O, and 35Cl NMR parameters, including chemical shift tensors and quadrupolar tensors for 14N, 17O, and 35Cl, are calculated for the crystalline forms of various amino acids under periodic boundary conditions and complemented by experiment where necessary. The 13C shift tensors and 14N electric field gradient (EFG) tensors are in excellent agreement with experiment. Similarly, static 17O NMR spectra could be precisely simulated using the calculation of the full chemical shift (CS) tensors and their relative orientation with the EFG tensors. This study allows correlations to be found between hydrogen bonding in the crystal structures and the 17O NMR shielding parameters and the 35Cl quadrupolar parameters, respectively. Calculations using the two experimental structures for L-alanine have shown that, while the calculated isotropic chemical shift values of 13C and 15N are relatively insensitive to small differences in the experimental structure, the 17O shift is markedly affected.  相似文献   

16.
17.
Cannabicitran is an important cannabinoid natural product produced by Cannabis sativa and is often found at surprisingly high levels (up to ~10%) in “purified” commercial cannabidiol (CBD) extract preparations. Despite the prevalence of this molecule in CBD oil and other cannabinoid-related products, and the rapidly expanding interest in cannabinoids for treatment of a wide range of physiological conditions, only unassigned 1H NMR data and partial unambiguous 13C assignments have been published. Herein, we report the complete 1H and 13C NMR assignments of cannabicitran and comparatively evaluate the performance of several density functional theory (DFT) methods with varying levels of theory for the calculation of NMR chemical shifts.  相似文献   

18.

Abstract  

We report the synthesis and structural study of eight compounds, either quinolin-4(1H)-ones or quinolines. Tautomerism as well as (E) → (Z) and rotational isomerism were studied both experimentally (1H and 13C NMR) and theoretically [B3LYP/6-311++G(d,p)].  相似文献   

19.
Iron (II) basket-handle porphyrins (BHP) are a series of encumbered heme models designed several years ago to mimic the ligand binding site of hemoproteins. Contrary to expectations, kinetic investigations have revealed that the k(on) rates for CO and/or O2 binding were only marginally affected by the assumed central steric hindrance of the iron atom. Thus, it was hypothesized that the internal dynamics of the molecule might be at the origin of the poor steric protection. To address this issue, measurements of nuclear magnetic resonance relaxation rates, fluorescence anisotropy experiments, and molecular dynamics simulations were undertaken. The size of BHP is small enough to allow the simulation in explicit chloroform with an almost complete sampling of the conformational space. The order parameters calculated from the MD trajectory compare well with the NMR experimental data and the predicted rotational correlation time corresponding to the Brownian motion of the molecule is in good agreement with the fluorescence measurements. Moreover, combining the results obtained using the three techniques allows the attribution of each internal NMR correlation time to a particular internal motion, revealing that even such medium-sized molecules are able to display quite complex internal dynamics. In particular, the handle phenyls that were assumed to sandwich the porphyrin have in fact a vanishing probability to be found in the proximity of the iron atom. They are therefore unable to reduce ligand accessibility significantly, which may explain the behavior of the k(on) rates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号