首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
本文主要研究高维带弱奇异核的发展型方程的交替方向隐式(ADI)差分方法.向后欧拉(Euler)方法联立一阶卷积求积公式处理时间方向的离散,有限差分方法处理空间方向的离散,并进一步构造了ADI全离散差分格式.然后将二维问题延伸到三维问题,构造三维空间问题的ADI差分格式.基于离散能量法,详细证明了全离散格式的稳定性和误差分析.随后给出了2个数值算例,数值结果进一步验证了时间方向的收敛阶为一阶,空间方向的收敛阶为二阶,和理论分析结果一致.  相似文献   

2.
This article presents a finite element scheme with Newton's method for solving the time‐fractional nonlinear diffusion equation. For time discretization, we use the fractional Crank–Nicolson scheme based on backward Euler convolution quadrature. We discuss the existence‐uniqueness results for the fully discrete problem. A new discrete fractional Gronwall type inequality for the backward Euler convolution quadrature is established. A priori error estimate for the fully discrete problem in L2(Ω) norm is derived. Numerical results based on finite element scheme are provided to validate theoretical estimates on time‐fractional nonlinear Fisher equation and Huxley equation.  相似文献   

3.
In this paper, we investigate the numerical solution of the three-dimensional (3D) nonlinear tempered fractional integrodifferential equation which is subject to the initial and boundary conditions. The backward Euler (BE) method in association with the first-order convolution quadrature rule is employed to discretize this equation for time, and the Galerkin finite element method is applied for space, which is combined with an alternating direction implicit (ADI) algorithm, in order to reduce the computational cost for solving the three-dimensional nonlocal problem. Then a fully discrete BE ADI Galerkin finite element scheme can be obtained by linearizing the non-linear term. Thereafter we prove a positive-type lemma, from which the stability and convergence of the proposed numerical scheme are derived based on the energy method. Numerical experiments are performed to verify the effectiveness of the proposed approach.  相似文献   

4.
We use the generalized L1 approximation for the Caputo fractional derivative, the second-order fractional quadrature rule approximation for the integral term, and a classical Crank-Nicolson alternating direction implicit (ADI) scheme for the time discretization of a new two-dimensional (2D) fractional integro-differential equation, in combination with a space discretization by an arbitrary-order orthogonal spline collocation (OSC) method. The stability of a Crank-Nicolson ADI OSC scheme is rigourously established, and error estimate is also derived. Finally, some numerical tests are given.  相似文献   

5.
New numerical techniques are presented for the solution of the two-dimensional time fractional evolution equation in the unit square. In these methods, Galerkin finite element is used for the spatial discretization, and, for the time stepping, new alternating direction implicit (ADI) method based on the backward Euler method combined with the first order convolution quadrature approximating the integral term are considered. The ADI Galerkin finite element method is proved to be convergent in time and in the $L^2$ norm in space. The convergence order is$\mathcal{O}$($k$|ln $k$|+$h^r$), where $k$ is the temporal grid size and $h$ is spatial grid size in the $x$ and $y$ directions, respectively. Numerical results are presented to support our theoretical analysis.  相似文献   

6.
A compact alternating direction implicit (ADI) method has been developed for solving two‐dimensional parabolic differential equations. In this study, the second‐order derivatives with respect to space are discretized using the high‐order compact finite differences. The Peaceman‐Rachford ADI method is then used for developing a new ADI scheme. It is shown by the discrete Fourier analysis that this new ADI scheme is unconditionally stable. The method can be generalized to the three‐dimensional case and an unconditionally stable compact Douglas ADI scheme is obtained. The method is illustrated by numerical examples. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 129–142, 2002; DOI 10.1002/num.1037  相似文献   

7.
In this paper, a new kind of alternating direction implicit (ADI) Crank-Nicolson-type orthogonal spline collocation (OSC) method is formulated for the two-dimensional fractional evolution equation with a weakly singular kernel arising in the theory of linear viscoelasticity. The novel OSC method is used for the spatial discretization, and ADI Crank-Nicolson-type method combined with the second order fractional quadrature rule are considered for the temporal component. The stability of proposed scheme is rigourously established, and nearly optimal order error estimate is also derived. Numerical experiments are conducted to support the predicted convergence rates and also exhibit expected super-convergence phenomena.  相似文献   

8.
In this paper, a compact finite difference scheme is constructed and investigated for the fourth-order time-fractional integro-differential equation with a weakly singular kernel. In the temporal direction, the Caputo derivative term is treated by means of L1 discrete formula and the Riemann–Liouville fractional integral term is discretized by the second-order convolution quadrature rule. A fully discrete compact difference scheme is constructed with the space discretization by the fourth-order compact approximation. The stability and convergence are obtained by the discrete energy method, the Cholesky decomposition and the reduced-order method. Numerical experiments are presented to verify the theoretical analysis.  相似文献   

9.
The difference method with intrinsic parallelism for two dimensional parabolic system is studied. The general alternating difference schemes, in particular those with variable time steplengthes, are constructed and proved to be unconditionally stable. The two dimensional alternating group explicit scheme, alternating block explicit‐implicit scheme, alternating block Crank‐Nicolson scheme and block ADI scheme are the special cases of the general schemes constructed here. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 625–636, 1999  相似文献   

10.
The numerical solution for the one‐dimensional complex fractional Ginzburg–Landau equation is considered and a linearized high‐order accurate difference scheme is derived. The fractional centered difference formula, combining the compact technique, is applied to discretize fractional Laplacian, while Crank–Nicolson/leap‐frog scheme is used to deal with the temporal discretization. A rigorous analysis of the difference scheme is carried out by the discrete energy method. It is proved that the difference scheme is uniquely solvable and unconditionally convergent, in discrete maximum norm, with the convergence order of two in time and four in space, respectively. Numerical simulations are given to show the efficiency and accuracy of the scheme. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 105–124, 2017  相似文献   

11.
Ch. Zhang  A. Savaidis 《PAMM》2002,1(1):205-206
Analysis of elastic wave propagation in anisotropic solids with cracks is of particular interest to quantitative non‐destructive testing and fracture mechanics. For this purpose, a novel time‐domain boundary integral equation method (BIEM) is presented in this paper. A finite crack in an unbounded elastic solid of general anisotropy subjected to transient elastic wave loading is considered. Two‐dimensional plane strain or plane stress condition is assumed. The initial‐boundary value problem is formulated as a set of hypersingular time‐domain traction boundary integral equations (BIEs) with the crack‐opening‐displacements (CODs) as unknown quantities. A time‐stepping scheme is developed for solving the hypersingular time‐domain BIEs. The scheme uses the convolution quadrature formula of Lubich [1] for temporal convolution and a Galerkin method for spatial discretization of the BIEs. An important feature of the present time‐domain BIEM is that it uses the Laplace‐domain instead of the more complicated time‐domain Green's functions. Fourier integral representations of Laplace‐domain Green's functions are applied. No special technique is needed in the present time‐domain BIEM for evaluating hypersingular integrals.  相似文献   

12.
In this paper, we consider a two‐dimensional multi‐term time‐fractional Oldroyd‐B equation on a rectangular domain. Its analytical solution is obtained by the method of separation of variables. We employ the finite difference method with a discretization of the Caputo time‐fractional derivative to obtain an implicit difference approximation for the equation. Stability and convergence of the approximation scheme are established in the L ‐norm. Two examples are given to illustrate the theoretical analysis and analytical solution. The results indicate that the present numerical method is effective for this general two‐dimensional multi‐term time‐fractional Oldroyd‐B model.  相似文献   

13.
In this article, we develop an exponential high order compact alternating direction implicit (EHOC ADI) method for solving three dimensional (3D) unsteady convection–diffusion equations. The method, which requires only a regular seven‐point 3D stencil similar to that in the standard second‐order methods, is second order accurate in time and fourth‐order accurate in space and unconditionally stable. The resulting EHOC ADI scheme in each alternating direction implicit (ADI) solution step corresponding to a strictly diagonally dominant matrix equation can be solved by the application of the one‐dimensional tridiagonal Thomas algorithm with a considerable saving in computing time. Numerical experiments for three test problems are carried out to demonstrate the performance of the present method and to compare it with the classical Douglas–Gunn ADI method and the Karaa's high‐order compact ADI method. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

14.
A compact ADI scheme of second‐order in time and fourth‐order in space is proposed for solving linear Schrödinger equations with periodic boundary conditions. By using the recently suggested discrete energy method, it is shown that the stable compact ADI method is unconditionally convergent in the maximum norm. Numerical experiments, including the comparisons with the second‐order ADI scheme and the time‐splitting Fourier pseudospectral method, are presented to support the theoretical results and show the effectiveness of our method. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2012  相似文献   

15.
We propose and analyze a fully discrete Laplace modified alternating direction implicit quadrature Petrov–Galerkin (ADI‐QPG) method for solving parabolic initial‐boundary value problems on rectangular domains. We prove optimal order convergence results for a restricted class of the associated elliptic operator and demonstrate accuracy of our scheme with numerical experiments for some parabolic problems with variable coefficients.© 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

16.
A one dimensional fractional diffusion model with the Riemann–Liouville fractional derivative is studied. First, a second order discretization for this derivative is presented and then an unconditionally stable weighted average finite difference method is derived. The stability of this scheme is established by von Neumann analysis. Some numerical results are shown, which demonstrate the efficiency and convergence of the method. Additionally, some physical properties of this fractional diffusion system are simulated, which further confirm the effectiveness of our method.  相似文献   

17.
This paper is concerned with a compact difference scheme with the truncation error of order 3/2 for time and order 4 for space to an evolution equation with a weakly singular kernel. The integral term is treated by means of the second order convolution quadrature suggested by Lubich. The stability and convergence are proved by the energy method. A numerical experiment is reported to verify the theoretical predictions.  相似文献   

18.
一类非线性偏积分微分方程二阶差分全离散格式   总被引:1,自引:0,他引:1  
给出了数值求解一类非线性偏积分微分方程的二阶全离散差分格式.采用了二阶向后差分格式,积分项的离散利用了Lubich的二阶卷积求积公式,给出了稳定性的证明、误差估计及收敛性的结果.  相似文献   

19.
We derive a high‐order compact alternating direction implicit (ADI) method for solving three‐dimentional unsteady convection‐diffusion problems. The method is fourth‐order in space and second‐order in time. It permits multiple uses of the one‐dimensional tridiagonal algorithm with a considerable saving in computing time and results in a very efficient solver. It is shown through a discrete Fourier analysis that the method is unconditionally stable in the diffusion case. Numerical experiments are conducted to test its high order and to compare it with the standard second‐order Douglas‐Gunn ADI method and the spatial fourth‐order compact scheme by Karaa. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

20.
一类偏积分微分方程二阶差分全离散格式   总被引:2,自引:0,他引:2  
陈红斌  陈传淼  徐大 《计算数学》2006,28(2):141-154
本文给出了数值求解一类偏积分微分方程的二阶差分全离散格式.时间方向采用了二阶向后差分格式,积分项的离散利用了Lubich的二阶卷积求积公式,给出了稳定性的证明、误差估计及收敛性的结果,并给出了数值例子.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号