首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seven crystal structures of five first‐row (Fe, Co, Ni, Cu, and Zn) and one second‐row (Cd) transition metal–4‐picoline (pic)–sulfate complexes of the form [M(pic)x]SO4 are reported. These complexes are catena‐poly[[tetrakis(4‐methylpyridine‐κN)metal(II)]‐μ‐sulfato‐κ2O:O′], [M(SO4)(C6H7N)4]n, where the metal/M is iron, cobalt, nickel, and cadmium, di‐μ‐sulfato‐κ4O:O‐bis[tris(4‐methylpyridine‐κN)copper(II)], [Cu2(SO4)2(C6H7N)6], catena‐poly[[bis(4‐methylpyridine‐κN)zinc(II)]‐μ‐sulfato‐κ2O:O′], [Zn(SO4)(C6H7N)2]n, and catena‐poly[[tris(4‐methylpyridine‐κN)zinc(II)]‐μ‐sulfato‐κ2O:O′], [Zn(SO4)(C6H7N)3]n. The Fe, Co, Ni, and Cd compounds are isomorphous, displaying polymeric crystal structures with infinite chains of MII ions adopting an octahedral N4O2 coordination environment that involves four picoline ligands and two bridging sulfate anions. The Cu compound features a dimeric crystal structure, with the CuII ions possessing square‐pyramidal N3O2 coordination environments that contain three picoline ligands and two bridging sulfate anions. Zinc crystallizes in two forms, one exhibiting a polymeric crystal structure with infinite chains of ZnII ions adopting a tetrahedral N2O2 coordination containing two picoline ligands and two bridging sulfate anions, and the other exhibiting a polymeric crystal structure with infinite chains of ZnII ions adopting a trigonal bipyramidal N3O2 coordination containing three picoline ligands and two bridging sulfate anions. The structures are compared with the analogous pyridine complexes, and the observed coordination environments are examined in relation to crystal field theory.  相似文献   

2.
The crystal structures of the first‐row transition‐metal series of tris(ethylenediamine‐κ2N ,N ′)metal(II) diacetate, [M (C2H8N2)3](CH3CO2)2, with M = Mn, Fe, Co, Ni, Cu, and Zn, are reported. The complexes are all isostructural, crystallizing in a centrosymmetric triclinic cell and possessing an asymmetric unit composed of one [M (en)3]2+ cation and two symmetrically independent acetate anions. In the unit cell, the two complex cations are inversion‐generated enantiomers, possessing the energetically favoured Δ(λλλ) and Λ(δδδ) configurations. The complex cations and acetate anions combine through a series of N—H…O hydrogen bonds to generate a three‐dimensional network in the crystals. The other notable feature of the series is a significant Jahn–Teller distortion for the d 9 Cu2+ complex.  相似文献   

3.
An integrated Xray diffraction study was performed on polycrystals and single crystals of three new isostructural phases with general formula Ag4A2[M(NO2)4]3 (M = Pd, Pt; A = K, Rb). Data on the crystal structure solution (CAD4 diffractometer, MoK radiation, graphite monochromator = 2–30° are presented. In one crystallographically independent [M(NO2)4]2- complex anion, the planar square coordination of the central atom is completed to 4 + 2 by two oxygen atoms at a distance of 3.02–3.12 in the other anion, it is completed to 4 + 1 + 1 by an oxygen atom at a distance of 3.12–3.30 and an Ag+ cation at a distance of 3.04–3.11 . Part of the Ag+ cations form Ag - Ag dimers with a distance of 3.03–3.07. Crystalchemical analysis of known structures containing [Pd(NO2)4]2- complex anions was performed. It has been established that in none of the cases do any of the possible limiting configurations occur.  相似文献   

4.
Four new quaternary chalcogenides, Ba4AgGaS6 ( 1 ), Ba4AgGaSe6 ( 2 ), Ba4CuInS6 ( 3 ), and Ba4AgInS6 ( 4 ), were synthesized by solid‐state reactions and their structures were characterized through single‐crystal X‐ray diffraction. In spite of their similar chemical compositions, the flexible arrangement between the transition metals and the triel atoms leads to subtle differences in their polyanion structures. All structures feature similar [MTrQ6]8? 1D polyanionic chains (M=Cu, Ag; Tr=Ga, In; Q=S, Se), which are constructed from corner‐sharing MQ4 or TrQ4 tetrahedra. However, the transition metals and triels are mixed in 1 , 2 , and 3 , but they occupy independent crystallographic sites in 4 . As a result, compounds 1 – 3 belong to the known Ba2CoS3 (Pnma No. 62) or Ba2MnS3 (Pnma No. 62) class, whereas 4 crystallizes in its own structural type within the monoclinic P21/c (No. 14) space group. The structural relationship among these new phases was also studied with the aid of DFT calculations and related optical properties are presented as well.  相似文献   

5.
Single crystals of tetrakis(thiadiazole)porphyrazine and the corresponding metal(II) derivatives, MTTDPz (M=H2, Fe, Co, Ni, Cu, and Zn) were grown by sublimation under reduced pressure with continuous N2 gas flow. Their structures, obtained by X-ray crystallographic analysis, depend significantly on the central metal ion, and the M=Ni and Cu derivatives exhibit polymorphism. They can be classified into three forms, alpha, beta, and gamma. The alpha form (M=H2, Ni, and Cu) is composed of two-dimensional hexagonal close packing formed by side-by-side contacts between thiadiazole rings, whereas the beta form (M=Fe, Co, and Zn) crystallizes into a one-dimensional coordination polymer. The gamma form (M=Ni and Cu) consists of a ladder structure caused by pi stacking, similar to the beta form of phthalocyanine, and by side-by-side contacts between thiadiazole rings. Although the crystal structures of the MTTDPz series exhibited multi-dimensional network structures, magnetic measurements revealed relatively weak exchange interactions, probably reflecting the long distances between the metal ions.  相似文献   

6.
设计并合成了一个含吡啶基团的柔性配体:N,N′-Bis(3-pyridylmethyl)-1,4-benzenedimethylamine(bpb)。通过bpb与硫酸锌及硫酸铜反应得到了两个新型具有一维链状结构的配位聚合物:[M(H2bpb)(H2O)4](SO4)2·6H2O[M=Zn(Ⅱ) 1,Cu(Ⅱ) 2]。X-射线晶体结构测定表明,这两个  相似文献   

7.
Bimetallic macrocyclic complexes have attracted the attention of chemists and various organic ligands have been used as molecular building blocks, but supramolecular complexes based on semi‐rigid organic ligands containing 1,2,4‐triazole have remained rare until recently. It is easier to obtain novel topologies by making use of asymmetric semi‐rigid ligands in the self‐assembly process than by making use of rigid ligands. A new semi‐rigid ligand, 3‐[(pyridin‐4‐ylmethyl)sulfanyl]‐5‐(quinolin‐2‐yl)‐4H‐1,2,4‐triazol‐4‐amine (L), has been synthesized and used to generate two novel bimetallic macrocycle complexes, namely bis{μ‐3‐[(pyridin‐4‐ylmethyl)sulfanyl]‐5‐(quinolin‐2‐yl)‐4H‐1,2,4‐triazol‐4‐amine}bis[(methanol‐κO)(nitrato‐κ2O,O′)nickel(II)] dinitrate, [Ni2(NO3)2(C17H14N6S)2(CH3OH)2](NO3)2, (I), and bis{μ‐3‐[(pyridin‐4‐ylmethyl)sulfanyl]‐5‐(quinolin‐2‐yl)‐4H‐1,2,4‐triazol‐4‐amine}bis[(methanol‐κO)(nitrato‐κ2O,O′)zinc(II)] dinitrate, [Zn2(NO3)2(C17H14N6S)2(CH3OH)2](NO3)2, (II), by solution reactions with the inorganic salts M(NO3)2 (M = Ni and Zn, respectively) in mixed solvents. In (I), two NiII cations with the same coordination environment are linked by L ligands through Ni—N bonds to form a bimetallic ring. Compound (I) is extended into a two‐dimensional network in the crystallographic ac plane via N—H…O, O—H…N and O—H…O hydrogen bonds, and neighbouring two‐dimensional planes are parallel and form a three‐dimensional structure via π–π stacking. Compound (II) contains two bimetallic rings with the same coordination environment of the ZnII cations. The ZnII cations are bridged by L ligands through Zn—N bonds to form the bimetallic rings. One type of bimetallic ring constructs a one‐dimensional nanotube via O—H…O and N—H…O hydrogen bonds along the crystallographic a direction, and the other constructs zero‐dimensional molecular cages via O—H…O and N—H…O hydrogen bonds. They are interlinked into a two‐dimensional network in the ac plane through extensive N—H…O hydrogen bonds, and a three‐dimensional supramolecular architecture is formed via π–π interactions between the centroids of the benzene rings of the quinoline ring systems.  相似文献   

8.
Dimethylsulfone reacts in the binary superacidic systems XF/MF5 (X = H, D; M = As, Sb) under the formation of the corresponding salts of the type [(CH3)2SO(OX)]+[MF6]. The salts are characterized by low temperature vibrational spectroscopy. In case of [(CH3)2SO(OH)]+[SbF6] a single‐crystal X‐ray structure analysis is reported. The salt crystallizes in the orthorhombic space group Pbca with eight formula units per unit cell [a = 10.3281(3) Å, b = 12.2111(4) Å, c = 13.9593(4) Å]. The experimental results are discussed together with quantum chemical calculations on the PBE1PBE/6‐311G++(3pd,3df) level of theory.  相似文献   

9.
Polypyridyl multidentate ligands based on ethylenediamine backbones are important metal‐binding agents with applications in biomimetics and homogeneous catalysis. The seemingly hexadentate tpena ligand [systematic name: N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetate] reacts with zinc chloride and zinc bromide to form trichlorido[μ‐N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetato]dizinc(II), [Zn2(C22H24N5O2)Cl3], and tribromido[μ‐N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetato]dizinc(II), [Zn2Br3(C22H24N5O2)]. One ZnII ion shows the anticipated N5O coordination in an irregular six‐coordinate site and is linked by an anti carboxylate bridge to a tetrahedral ZnX3 (X = Cl or Br) unit. In contrast, the CuII ions in aquatribromido[μ‐N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetato]dicopper(II)–tribromido[μ‐N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetato]dicopper(II)–water (1/1/6.5) [Cu2Br3(C22H24N5O2)][Cu2Br3(C22H24N5O2)(H2O)]·6.5H2O, occupy two tpena‐chelated sites, one a trigonal bipyramidal N3Cl2 site and the other a square‐planar N2OCl site. In all three cases, electrospray ionization mass spectra were dominated by a misleading ion assignable to [M(tpena)]+ (M = Zn2+ and Cu2+).  相似文献   

10.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.  相似文献   

11.
Reactions of M+(H2O)n (M=V, Cr, Mn, Fe, Co, Ni, Cu, Zn; n≤40) with NO were studied by Fourier transform ion cyclotron resonance (FT‐ICR) mass spectrometry. Uptake of NO was observed for M=Cr, Fe, Co, Ni, Zn. The number of NO molecules taken up depends on the metal ion. For iron and zinc, NO uptake is followed by elimination of HNO and formation of the hydrated metal hydroxide, with strong size dependence. For manganese, only small HMnOH+(H2O)n?1 species, which are formed under the influence of room‐temperature black‐body radiation, react with NO. Here NO uptake competes with HNO formation, both being primary reactions. The results illustrate that, in the presence of water, transition‐metal ions are able to undergo quite particular and diverse reactions with NO. HNO is presumably formed through recombination of a proton and 3NO? for M=Fe, Zn, preferentially for n=15–20. For manganese, the hydride in HMnOH+(H2O)n?1 is involved in HNO formation, preferentially for n≤4. The strong size dependence of the HNO formation efficiency illustrates that each molecule counts in the reactions of small ionic water clusters.  相似文献   

12.
13.
Hydrothermal synthesis has afforded a family of new coordination polymers incorporating 3,3′‐bipyridine (3,3′‐bpy), {[M(3,3′‐bpy)(H2O)4](SO4)·2H2O} (M = Co, Ni, Zn). The crystal structures revealed 1‐D undulating cationic ribbons of formulation {[M(3,3′‐bpy)(H2O)4]}n2n+ with both unligated charge‐balancing sulfate anions and water molecules of crystallization entrapped by hydrogen bonding. The 1‐D ribbons run along the (101) crystal direction and further aggregate via extensive hydrogen bonding patterns. Thermal decomposition data were consistent with stepwise loss of water molecules of crystallization and aquo ligands followed by decomposition due to ligand removal.  相似文献   

14.
合成了四个三核簇合物[A]2[MS4(CuCN)2](1A=Et4N,M=Mo;2A=PPh4,M=W;3A=Et4N,M=W;4A=PPh4,M=Mo),测定了[Et4N]2[MoS4(CuCN)2]*H2O(1*H2O)和[PPh4]2[WS4(CuCN)2]*0.5DMF*H2O(2*0.5DMF*H2O)的晶体结构.1和2的簇阴离子[MS4(CuCN)2]2-(M=Mo,W)均具有一个双齿配体MS42-和两个CuCN形成的近似D2d对称性结构.  相似文献   

15.
Complexes formed between metal dications, the conjugate base of uracil, and uracil are investigated by sustained off‐resonance irradiation collision‐induced dissociation (SORI‐CID) in a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Positive‐ion electrospray spectra show that [M(Ura?H)(Ura)]+ (M=Zn, Cu, Ni, Co, Fe, Mn, Cd, Pd, Mg, Ca, Sr, Ba, or Pb) is the most abundant ion even at low concentrations of uracil. SORI‐CID experiments show that the main primary decomposition pathway for all [M(Ura?H)(Ura)]+, except where M=Ca, Sr, Ba, or Pb, is the loss of HNCO. Under the same SORI‐CID conditions, when M is Ca, Sr, Ba, or Pb, [M(Ura?H)(Ura)]+ are shown to lose a molecule of uracil. Similar results were observed under infrared multiple‐photon dissociation excitation conditions, except that [Ca(Ura?H)(Ura)]+ was found to lose HNCO as the primary fragmentation product. The binding energies between neutral uracil and [M(Ura?H)]+ (M=Zn, Cu, Ni, Fe, Cd, Pd ,Mg, Ca, Sr Ba, or Pb) are calculated by means of electronic‐structure calculations. The differences in the uracil binding energies between complexes which lose uracil and those which lose HNCO are consistent with the experimentally observed differences in fragmentation pathways. A size dependence in the binding energies suggests that the interaction between uracil and [M(Ura?H)]+ is ion–dipole complexation and the experimental evidence presented supports this.  相似文献   

16.
17.
Nitrido-Sodalites. II. Synthesis, Crystal Structure, and Properties of M(6+(y/2)–x)H2x[P12N24]Zy with M = Fe, Co, Ni, Mn; Z = Cl, Br, I; 0 ≤ x ≤ 4; y ≤ 2 The nitrido sodalites M(6+(y/2)–x)H2x[P12N24]Zy with M = Fe, Co, Ni, Mn; Z = Cl, Br, I; 0 ≤ x ≤ 4; y ≤ 2 are obtained by the reaction of HPN2 or [PN(NH2)2]3 with the metal halogenide MZ2 (T = 700°C). The compounds are isotypic to Zn(7–x)H2x[P12N24]Cl2. An increase of the ionic radii of the cations or anions results in an expansion of the lattice which is caused by an increase of the P? N? P angle. The influence of the cation is more dominant than that of the anion. By reacting [PN(NH2)2]3 with metal halogenide (MZ2) hydrogen free, X-ray amorphous products are obtained. The formation of the chloride-containing P? N-sodalite in this reaction begins at temperatures below 450°C.  相似文献   

18.
19.
Polysulfonylamines. LXXXIV. Isotypic Structures in the Dimesylamide Complex Series [M(H2O)4{(CH3SO2)2N}2] (M?Mg, Ca, Ni, Cu, Zn, Cd) and [M(py)4{(CH3SO2)2N}2] (M?Ni, Cu, Zn, Cd) The crystal structures of the trans-octahedral complexes [M(H2O)4{(CH3SO2)2N}2] (M?Ca, Cd), in which the dimesylamide anion acts as a monodentate O-ligand and a tetrafunctional hydrogen bond acceptor, were determined by low-temperature X-ray diffraction. Both belong to an isotypic series (triclinic, space group P1 , Z = 1) that had previously been characterized for M?Mg, Ni, Cu and Zn (Z. Anorg. Allg. Chem. 1996 , 622, 1065). In this structure there exists an extended network of strong hydrogen bonds which is probably the underlying reason why the structure type surprisingly persists across the whole series. To support this explanation by indirect evidence from comparison with suitable structures devoid of strong hydrogen bonding, the analogous trans-octahedral complexes [M(py)4{(CH3SO2)2N}2] (M?Mn, Co, Ni, Cu, Zn, Cd) were prepared by treating M[(CH3SO2)2N]2 with pyridine, and the crystal structures of the Ni, Cu, Zn and Cd compounds were studied by low-temperature X-ray crystallography. As anticipated, the four pyridine complexes do not form an isotypic series but instead two isotypic pairs consisting of the Ni and Zn compounds (monoclinic, space group P21/n, Z =2) and of the Cu and Cd complexes (triclinic, space group P1, Z = 1). All molecules of the aqua and the pyridine complexes display crystallographic centrosymmetry. In the hydrates, the mean M? OH2 and the M? O(anion) distances are 232.6 and 232.7 pm for M ? Ca, 225.5 and 230.3 pm für M ? Cd. The mean M? N and the M? O(anion) bond lengths of the pyridine species amount to 211.8 and 213.1 pm for M ? Ni, 217.0 and 218.5 pm for M ? Zn, 232.8 and 234.4 pm for M ? Cd; the corresponding values for the severely Jahn-Teller distorted Cu complex are 203.6 and 254.5 pm. In the crystals of the pyridine complexes, each methyl group is connected through a weak C? H…?O bond to a sulfonyl oxygen atom of an adjacent molecule.  相似文献   

20.
A series of dinuclear complexes, [Tp(R)M--M'L(n)] [Tp(iPr(2) )M--Co(CO)(4) (1; M=Ni, Co, Fe, Mn); Tp(#)M--Co(CO)(4) (1'; M=Ni, Co); Tp(#)Ni--RuCp(CO)(2) (3')] (Tp(iPr(2) )=hydrotris(3,5-diisopropylpyrazolyl)borato; Tp(#) (Tp(Me(2),4-Br))=hydrotris(3,5-dimethyl-4-bromopyrazolyl)borato), has been prepared by treatment of the cationic complexes [Tp(iPr(2) )M(NCMe)(3)]PF(6) or the halo complexes [Tp(#)M--X] with the appropriate metalates. Spectroscopic and crystallographic characterization of 1-3' reveals that the tetrahedral, high-spin Tp(R)M fragment and the coordinatively saturated carbonyl-metal fragment (M'L(n)) are connected only by a metal-metal interaction and, thus, the dinuclear complexes belong to a unique class of xenophilic complexes. The metal-metal interaction in the xenophilic complexes is polarized, as revealed by their nu(CO) vibrations and structural features, which fall between those of reference complexes: covalently bonded species [R--M'L(n)] and ionic species [M'L(n)](-). Unrestricted DFT calculations for the model complexes [Tp(H(2) )Ni--Co(CO)(4)], [Tp(H(2) )Ni--Co(CO)(3)(PH(3))], and [Tp(H(2) )Ni--RuCp(CO)(2)] prove that the two metal centers are held together not by covalent interactions, but by electrostatic attractions. In other words, the obtained xenophilic complexes can be regarded as carbonylmetalates, in which the cationic counterpart interacts with the metal center rather than the oxygen atom of the carbonyl ligand. The xenophilic complexes show divergent reactivity dependent on the properties of donor molecules. Hard (N and O donors) and soft donors (P and C donors) attack the Tp(R)M part and the ML(n) moiety, respectively. The selectivity has been interpreted in terms of the hard-soft theory, and the reactions of the high-spin species 1-3' with singlet donor molecules should involve a spin-crossover process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号