首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper considers the problems of the robust stability analysis and H controller synthesis for uncertain discrete‐time switched systems with interval time‐varying delay and nonlinear disturbances. Based on the system transformation and by introducing a switched Lyapunov‐Krasovskii functional, the novel sufficient conditions, which guarantee that the uncertain discrete‐time switched system is robust asymptotically stable are obtained in terms of linear matrix inequalities. Then, the robust H control synthesis via switched state feedback is studied for a class of discrete‐time switched systems with uncertainties and nonlinear disturbances. We designed a switched state feedback controller to stabilize asymptotically discrete‐time switched systems with interval time‐varying delay and H disturbance attenuation level based on matrix inequality conditions. Examples are provided to illustrate the advantage and effectiveness of the proposed method.  相似文献   

2.
This article is concerned with the problem of finite‐time synchronization control for a class of discrete‐time nonlinear chaotic systems under unreliable communication links. Our aim is to design a delayed feedback controller such that the resulting synchronization error system is stochastically finite‐time bounded with a guaranteed performance level over a finite time interval. Some sufficient conditions for the solvability of the above problem are established. A delayed feedback control scheme involving constrained information about the past state is presented. Finally, the Fold chaotic system is used to demonstrate the effectiveness of our proposed approach. © 2014 Wiley Periodicals, Inc. Complexity 21: 138–146, 2015  相似文献   

3.
This paper studies the robust partially mode‐dependent H filtering for nonhomogeneous Markovian jump neural networks with additive gain perturbations. The discrete time‐varying jump transition probability matrix is considered to be a polytope set. A partially mode‐dependent filter with additive gain perturbations is constructed to increase the robustness of the filter, which is subjects to H performance index. Based on the Lyapunov function approach, sufficient conditions are established such that the filtering error system is robustly stochastically stable. The efficiency of the new technique is illustrated by an illustrative example and a biological network example.  相似文献   

4.
This article addresses the issue of robust sampled‐data control for a class of uncertain mechanical systems with input delays and linear fractional uncertainties which appear in all the mass, damping, and stiffness matrices. Then, a novel Lyapunov–Krasovskii functional is constructed to obtain sufficient conditions under which the uncertain mechanical system is robustly, asymptotically stable with disturbance attenuation level about its equilibrium point for all admissible uncertainties. More precisely, Schur complement and Jenson's integral inequality are utilized to substantially simplify the derivation of the main results. In particular, a set of sampled‐data controller is designed in terms of the solution of certain linear matrix inequalities that can be solved effectively using available MATLAB software. Finally, a numerical example with simulation result is provided to show the effectiveness and less conservativeness of the proposed sampled‐data control scheme. © 2014 Wiley Periodicals, Inc. Complexity 20: 19–29, 2015  相似文献   

5.
研究了一类混沌时滞随机神经网络同步控制问题.采用更具一般性的时滞反馈控制器,通过巧妙地构造Lyapunov数,分别得到了均方指数同步和均方渐近同步两个判别准则.仿真例子表明,新准则是有效的.  相似文献   

6.
Zhen Liu  Cunchen Gao 《Complexity》2016,21(Z2):165-177
This article is devoted to designing linear sliding surface and adaptive sliding mode controller for a class of singular time‐delay systems with parametric uncertainties and external disturbance. In terms of linear matrix inequalities (LMIs), a sufficient criteria of H performance, and admissibility for considered sliding motion restricted to linear sliding surface is achieved, and the controller which guarantees the finite‐time reachability of the predesigned sliding surface is then developed, respectively. Finally, three examples show the effectiveness of the proposed result. © 2016 Wiley Periodicals, Inc. Complexity 21: 165–177, 2016  相似文献   

7.
In this paper, on the basis of the Lyapunov stability theory and finite‐time stability lemma, the finite‐time synchronization problem for memristive neural networks with time‐varying delays is studied by two control methods. First, the discontinuous state‐feedback control rule containing integral part for square sum of the synchronization error and the discontinuous adaptive control rule are designed for realizing synchronization of drive‐response memristive neural networks in finite time, respectively. Then, by using some important inequalities and defining suitable Lyapunov functions, some algebraic sufficient criteria guaranteeing finite‐time synchronization are deduced for drive‐response memristive neural networks in finite time. Furthermore, we give the estimation of the upper bounds of the settling time of finite‐time synchronization. Lastly, the effectiveness of the obtained sufficient criteria guaranteeing finite‐time synchronization is validated by simulation.  相似文献   

8.
Lei Su  Hao Shen 《Complexity》2016,21(6):246-259
This article is concerned with the fault‐tolerant mixed /passive synchronization problem for chaotic neural networks by sampled‐data control scheme. The objective is focused on the design of a reliable controller such that the mixed /passivity performance level of the resulting synchronization error system is ensured in the presence of actuator failures. A time‐dependent Lyapunov functional and an improved reciprocally convex approach combined with a novel integral inequality are applied to optimize the availability of the information on the actual sampling pattern. Then, some sufficient conditions of mixed /passivity performance analysis for the synchronization error systems are derived. A desired reliable sampled‐data controller is designed by solving the optimization problems. Finally, to demonstrate the effectiveness of the proposed method, a practical chaotic neural networks is provided. © 2015 Wiley Periodicals, Inc. Complexity 21: 246–259, 2016  相似文献   

9.
This article investigates the adaptive impulsive synchronization of delayed chaotic system with full unknown parameters. Aiming at this problem, we propose a new adaptive strategy, in which both the adaptive–impulsive controller and the parameters adaptive laws are designed via the discrete‐time signals from the drive system. The corresponding theoretical proof is given to guarantee the effectiveness of the proposed strategy. Moreover, the concrete adaptive strategies are achieved for delayed Hopfield neural network, optical Ikeda system and the well‐known delayed Lü chaotic system. As expected, numerical simulations show the effectiveness of the proposed strategy. This method has potential applications in parameters estimation, secure communication, and cryptanalysis when only discrete signals are transmitted in communication channel. © 2014 Wiley Periodicals, Inc. Complexity 21: 43–51, 2016  相似文献   

10.
In this article, the mean square exponential synchronization of a class of impulsive coupled neural networks with time‐varying delays and stochastic disturbances is investigated. The information transmission among the systems can be directed and lagged, that is, the coupling matrices are not needed to be symmetrical and there exist interconnection delays. The dynamical behaviors of the networks can be both continuous and discrete. Specially, the time‐varying delays are taken into consideration to describe the impulsive effects of the system. The control objective is that the trajectories of the salve system by designing suitable control schemes track the trajectories of the master system with impulsive effects. Consequently, sufficient criteria for guaranteeing the mean square exponential convergence of the two systems are obtained in view of Lyapunov stability theory, comparison principle, and mathematical induction. Finally, a numerical simulation is presented to show the verification of the main results in this article. © 2015 Wiley Periodicals, Inc. Complexity 21: 190–202, 2016  相似文献   

11.
In this article, synchronization problem of master–slave system with phase‐type semi‐Markovian switching is investigated via sliding mode control scheme. By utilizing a supplementary variable technique and a plant transformation, the master–slave semi‐Markovian switching system can be equivalently expressed as its associated Markovian switching system. Then an integral sliding surface is constructed to guarantee stochastic synchronization of master–slave semi‐Markovian switching system, and the suitable controller is synthesized to ensure that the trajectory of the closed‐loop error system can be driven onto the prescribed sliding mode surface. Finally, numerical simulations are presented to show the effectiveness of the proposed sliding‐mode design scheme. © 2015 Wiley Periodicals, Inc. Complexity 21: 430–441, 2016  相似文献   

12.
This paper proposes a framework for finite-time synchronization of coupled systems with time delay and stochastic disturbance under feedback control. Combining Kirchhoff"s Matrix Tree Theorem with Lyapunov method as well as stochastic analysis techniques, several sufficient conditions are derived. Differing from previous references, the finite time provided by us is related to topological structure of networks. In addition, two concrete applications about stochastic coupled oscillators with time delay and stochastic Lorenz chaotic coupled systems with time delay are presented, respectively. Besides, two synchronization criteria are provided. Ultimately, two numerical examples are given to illustrate the effectiveness and feasibility of the obtained results.  相似文献   

13.
In this article, we study the problem of robust H performance analysis for a class of uncertain Markovian jump systems with mixed overlapping delays. Our aim is to present a new delay‐dependent approach such that the resulting closed‐loop system is stochastically stable and satisfies a prescribed H performance level χ. The jumping parameters are modeled as a continuous‐time, finite‐state Markov chain. By constructing new Lyapunov‐Krasovskii functionals, some novel sufficient conditions are derived to guarantee the stochastic stability of the equilibrium point in the mean‐square. Numerical examples show that the obtained results in this article is less conservative and more effective. The results are also compared with the existing results to show its conservativeness. © 2016 Wiley Periodicals, Inc. Complexity 21: 460–477, 2016  相似文献   

14.
This article is concerned with the nonfragile filtering for wireless‐networked systems with energy constraint. To achieve the energy‐efficient goal, the local measurement is first sampled by nonuniform sampling, then we only choose one measurement to transmit it to the remote filter. In the filter design, the random occurring filter gain variation problem is taken into account. A new stochastic switched system model is presented to capture the nonuniform sampling, the measurement size reduction, and the random filter gain phenomena. Based on the switched system approach, stochastic system analysis, and Lyapunov stability theory, a sufficient condition is presented such that the filtering error system is exponentially stable in the mean‐square sense and a prescribed performance level is also guaranteed. The effectiveness of the proposed new method is illustrated by a simulation example. © 2015 Wiley Periodicals, Inc. Complexity 21: 79–89, 2016  相似文献   

15.
In this paper, by utilizing the Lyapunov functionals, the analysis method and the impulsive control, we analyze the exponential stability of Hopfield neural networks with time‐varying delays. A new criterion on the exponential stabilization by impulses and the exponential stabilization by periodic impulses is gained. We can see that impulses do contribution to the system's exponential stability. Two examples are given to illustrate the effectiveness of our result. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
This article focuses on the problem of exponential synchronization for fractional‐order chaotic systems via a nonfragile controller. A criterion for α‐exponential stability of an error system is obtained using the drive‐response synchronization concept together with the Lyapunov stability theory and linear matrix inequalities approach. The uncertainty in system is considered with polytopic form together with structured form. The sufficient conditions are derived for two kinds of structured uncertainty, namely, (1) norm bounded one and (2) linear fractional transformation one. Finally, numerical examples are presented by taking the fractional‐order chaotic Lorenz system and fractional‐order chaotic Newton–Leipnik system to illustrate the applicability of the obtained theory. © 2014 Wiley Periodicals, Inc. Complexity 21: 114–125, 2015  相似文献   

17.
In this paper, an impulsive controller is designed to achieve the exponential synchronization of chaotic delayed neural networks with stochastic perturbation. By using the impulsive delay differential inequality technique that was established in recent publications, several sufficient conditions ensuring the exponential synchronization of chaotic delayed networks are derived, which can be easily checked by LMI Control Toolbox in Matlab. A numerical example and its simulation is given to demonstrate the effectiveness and advantage of the theory results.  相似文献   

18.
In this article, the synchronization problem of uncertain complex networks with multiple coupled time‐varying delays is studied. The synchronization criterion is deduced for complex dynamical networks with multiple different time‐varying coupling delays and uncertainties, based on Lyapunov stability theory and robust adaptive principle. By designing suitable robust adaptive synchronization controllers that have strong robustness against the uncertainties in coupling matrices, the all nodes states of complex networks globally asymptotically synchronize to a desired synchronization state. The numerical simulations are given to show the feasibility and effectiveness of theoretical results. © 2014 Wiley Periodicals, Inc. Complexity 20: 62–73, 2015  相似文献   

19.
This article deals with the problem of nonfragile H output tracking control for a kind of singular Markovian jump systems with time‐varying delays, parameter uncertainties, network‐induced signal transmission delays, and data packet dropouts. The main objective is to design mode‐dependent state‐feedback controller under controller gain perturbations and bounded modes transition rates such that the output of the closed‐loop networked control system tracks the output of a given reference system with the required H output tracking performance. By constructing a more multiple stochastic Lyapunov–Krasovskii functional, the novel mode‐dependent and delay‐dependent conditions are obtained to guarantee the augmented output tracking closed‐loop system is not only stochastically admissible but also satisfies a prescribed H‐norm level for all signal transmission delays, data packet dropouts, and admissible uncertainties. Then, the desired state‐feedback controller parameters are determined by solving a set of strict linear matrix inequalities. A simple production system example and two numerical examples are used to verify the effectiveness and usefulness of the proposed methods. © 2015 Wiley Periodicals, Inc. Complexity 21: 396–411, 2016  相似文献   

20.
This paper is concerned with the exponential stability for the discrete‐time bidirectional associative memory neural networks with time‐varying delays. Based on Lyapunov stability theory, some novel delay‐dependent sufficient conditions are obtained to guarantee the globally exponential stability of the addressed neural networks. In order to obtain less conservative results, an improved Lyapunov–Krasovskii functional is constructed and the reciprocally convex approach and free‐weighting matrix method are employed to give the upper bound of the difference of the Lyapunov–Krasovskii functional. Several numerical examples are provided to illustrate the effectiveness of the proposed method. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号