首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
High‐pressure shock tube ignition delays have been and continue to be one of the key sources of data that are important to characterizing the combustion properties of real fuels. At pressures and temperatures of importance to practical applications, concerns have recently been raised as to the large differences observed between experimental data and chemical‐kinetic predictions using the common assumption that the shock tube behaves as a constant volume (V) system with constant internal energy (U). Here, a concise review is presented of phenomena that can considerably affect shock tube data at the extended test times (several milliseconds or longer) needed for the measurement of fuel/air ignition at practical conditions (i.e., high pressures and relatively low temperatures). These effects include fluid dynamic nonidealities as well as deflagrative processes typical of mild ignition events. Proposed modeling approaches that attempt to take into account these effects, by employing isentropic assumptions and pressure‐ and temperature‐varying systems, are evaluated and shown to significantly improve modeling results. Finally, it is argued that at the conditions of interest ignition delay data do not represent pure chemical‐kinetic observations but are affected by phenomena that are in some measure facility specific. This hampers direct cross comparison of the experimental ignition data collected in different venues. In such cases, pressure/temperature histories should be provided in order to properly interpret shock tube ignition data. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 143–150, 2010  相似文献   

2.
Interpreting shock tube ignition data   总被引:1,自引:0,他引:1  
Chemical kinetic modelers make extensive use of shock tube ignition data in the development and validation of combustion reaction mechanisms. These data come from measurements using a range of diagnostics and a variety of shock tubes, fuels, and initial conditions. With the wide selection of data available, it is useful to realize that not all of the data are of the same type or quality, nor are all the data suitable for simple, direct comparison with the predictions of reaction mechanisms. We present here a discussion of some guidelines for the comparison of shock tube ignition time data with reaction mechanism modeling. Areas discussed include definitions of ignition time; ignition time correlations (with examples taken from recent n‐heptane and isooctane measurements); shock tube constant‐volume behavior; shock tube diameter and boundary layer effects; carrier gas and impurity effects; and future needs and challenges in shock tube research. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36:510–523, 2004  相似文献   

3.
Ignition times and hydroxyl (OH) radical concentration time histories were measured behind reflected shock waves during the oxidation of three branched alkanes: iso‐butane (2‐methylpropane), iso‐pentane (2‐methylbutane), and iso‐octane (2,2,4‐trimethylpentane). Initial reflected shock conditions ranged from 1177 to 2009 K and 1.10 to 12.58 atm with dilute fuel/O2/Ar mixtures varying in fuel concentration from 100 ppm to 1.25% and in equivalence ratio from 0.25 to 2. Ignition times were measured using endwall CH emission and OH concentrations were measured using narrow‐linewidth ring‐dye laser absorption of the R1(5) line of the OH A‐X (0,0) band at 306.7 nm. The ignition times and OH concentration time histories were compared to modeled predictions of seven branched alkane oxidation mechanisms currently available in the literature and the implications of these comparisons are discussed. These data provide a unique database for the validation of detailed hydrocarbon oxidation mechanisms of propulsion related fuels. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 36: 67–78 2004  相似文献   

4.
The ignition behavior of methyl furan (2‐MF) and methyl tetrahydrofuran (2‐MTHF) is investigated using the shock tube technique. Experiments are carried out using homogeneous gaseous mixtures of fuel, oxygen, and argon with equivalence ratios, ?, of 0.5, 1.0, and 2.0 at average pressures of 3 and 12 atm over a temperature range of 1060–1300 K. In addition to ignition delay time measurements, fuel concentration time histories during ignition and pyrolysis of 2‐MTHF are obtained by means of laser absorption spectroscopy using a He–Ne laser at a fixed wavelength of 3.39 µm. With respect to ignition delay times, it is observed that under similar conditions of equivalence ratio and argon/oxygen ratio (D), 2‐MTHF has longer ignition delay times than 2‐MF at 3 atm. In addition, 2‐MTHF has longer ignition delay times than 2‐MF at higher temperatures for the case of 12 atm and under the same conditions of ? and D. The higher reactivity of 2‐MF, as indicated by shorter ignition delay times, is attributed to differences in chemical structure, whereby weaker C–H bond sites are more readily susceptible to radical attack than in 2‐MTHF. It is observed that ignition delay times of 2‐MTHF decrease with increasing equivalence ratio at 12 atm for fixed argon/oxygen ratio. Ignition delay times are compared with model predictions using recent chemical kinetic models of both fuels, showing that both models generally predict shorter ignition delay times than measured. The relatively higher absorption cross section of 2‐MTHF at 3.39 µm allows for its concentration time histories to be determined and compared to model predictions. In line with the observed discrepancy in ignition predictions, predicted 2‐MTHF concentration profiles are such that the fuel is shown to be more rapidly consumed than observed in the experiments. The study advances understanding of the combustion chemistry of these cyclic ethers that are potential alternative fuels.  相似文献   

5.
Kerosene is an ideal endothermic hydrocarbon. Its pyrolysis plays a significant role in the thermal protection for high-speed aircraft. Before it reacts, kerosene experiences thermal decomposition in the heat exchanger and produces cracked products. Thus, to use cracked kerosene instead of pure kerosene, knowledge of their ignition properties is needed. In this study, ignition delay times of cracked kerosene/air and kerosene/air were measured in a heated shock tube at temperatures of 657–1333 K, an equivalence ratio of 1.0, and pressures of 1.01 × 105–10.10 × 105 Pa. Ignition delay time was defined as the time interval between the arrival of the reflected shock and the occurrence of the steepest rise of excited-state CH species (CH*) emission at the sidewall measurement location. Pure helium was used as the driver gas for high-temperature measurements in which test times needed to be shorter than 1.5 ms, and tailored mixtures of He/Ar were used when test times could reach up to 15 ms. Arrhenius-type formulas for the relationship between ignition delay time and ignition conditions (temperature and pressure) were obtained by correlating the measured high-temperature data of both fuels. The results reveal that the ignition delay times of both fuels are close, and an increase in the pressure or temperature causes a decrease in the ignition delay time in the high-temperature region (> 1000 K). Both fuels exhibit similar high-temperature ignition delay properties, because they have close pressure exponents (cracked kerosene: τignP-0.85; kerosene:τignP-0.83) and global activation energies (cracked kerosene: Ea = 143.37 kJ·mol-1; kerosene: Ea = 144.29 kJ·mol-1). However, in the low-temperature region (< 1000 K), ignition delay characteristics are quite different. For cracked kerosene/air, while the decrease in the temperature still results in an increase in the ignition delay time, the negative temperature coefficient (NTC) of ignition delay does not occur, and the low-temperature ignition data still can be correlated by an Arrhenius-type formula with a much smaller global activation energy compared to that at high temperatures. However, for kerosene/air, this NTC phenomenon was observed, and the Arrhenius-type formula fails to correlate its low-temperature ignition data. At temperatures ranging from 830 to 1000 K, the cracked kerosene ignites faster than the kerosene; at temperatures below 830 K, kerosene ignition delay times become much shorter than those of cracked kerosene. Surrogates for cracked kerosene and kerosene are proposed based on the H/C ratio and average molecular weight in order to simulate ignition delay times for cracked kerosene/air and kerosene/air. The simulation results are in fairly good agreement with current experimental data for the two fuels at high temperatures (> 1000 K). However, in the low-temperature NTC region, the results are in very good agreement with kerosene ignition delay data but disagree with cracked kerosene ignition delay data. The comparison between experimental data and model predictions indicates that refinement of the reaction mechanisms for cracked kerosene and kerosene is needed. These test results are helpful to understand ignition properties of cracked kerosene in developing regenerative cooling technology for high-speed aircraft.  相似文献   

6.
This paper describes an experimental and modeling study of the oxidation of toluene. The low‐temperature oxidation was studied in a continuous flow stirred tank reactor with carbon‐containing products analyzed by gas chromatography under the following experimental conditions: temperature from 873 to 923 K, 1 bar, fuel equivalence ratios from 0.45 to 0.91, concentrations of toluene from 1.4 to 1.7%, and residence times ranging from 2 to 13 s corresponding to toluene conversion from 5 to 85%. The ignition delays of toluene–oxygen–argon mixtures with fuel equivalence ratios from 0.5 to 3 were measured behind reflected shock waves for temperatures from 1305 to 1795 K and at a pressure of 8.7 ± 0.7 bar. A detailed kinetic mechanism has been proposed to reproduce our experimental results, as well as some literature data obtained in other shock tubes and in a plug flow reactor. The main reaction paths have been determined by sensitivity and flux analyses. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 37: 25–49, 2005  相似文献   

7.
There is much interest in determining the influence of molecular structure on the rate of combustion of hydrocarbons; the C7H16 isomers of heptane have been selected here as they exemplify all the different structural elements present in aliphatic, noncyclic hydrocarbons. With the exception of n‐heptane itself, no autoignition studies have been carried out to date on the other isomers of heptane at high temperatures. Therefore, ignition delay times were measured for the oxidation of four isomers—n‐heptane, 2,2‐dimethylpentane, 2,3‐dimethylpentane, and 2,2,3‐trimethylbutane—under stoichiometric conditions at a reflected shock pressure of 2 atm, within the temperature range of 1150–1650 K. Measurements under identical conditions reveal that they all have essentially the same ignition delay time; this confirms earlier theoretical predictions based purely on detailed chemical kinetic modeling. The variation of ignition delay times for n‐heptane with changing oxygen concentrations and reflected shock pressure was determined and shown to follow expected trends. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 728–736, 2005  相似文献   

8.
We compared mass spectrometric (MS) performance of surface acoustic wave nebulization (SAWN) generated by a single interdigitated transducer (IDT) designed to produce a progressive wave (PW) to one with a dual IDT that can in theory generate standing waves (SW). Given that devices using dual IDTs had been shown to produce fewer large size droplets on average, we hypothesized they would improve MS performance by improving the efficiency of desolvation. Indeed, the SW‐SAWN chip provided an improved limit of detection of 1 femtomole of peptide placed on chip making it 100× more sensitive than the PW design. However, as measured by high‐speed image recording and phase Doppler particle analyzer measurements, there was only a 26% increase in the small diameter (1–10 µm) droplets produced from the new device, precluding a conclusion that the decrease in droplet size was solely responsible for the improvement in MS signal/noise. Given that the dual IDT design produced a more instantaneous plume than the PW design, the more likely contributor to improved MS signal/noise was concluded to be a higher ion flux entering the mass spectrometer for the dual IDT designs. Notably, the dual IDT device allowed production of much higher quality protein mass spectra up to about 20 kDa, compared with the single IDT device. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
The ignitability of various forest species was measured with a specifically designed apparatus, under precisely controlled temperature and airflow conditions. The ignitability tests were based on ignition delay time versus temperature measurements using five different forest species: Pinus halepensis, Pistacia lentiscus, Cupressus sempervirens, Olea europaea, Cistus incanus. These species are common in the Mediterranean region and frequently devastated by forest fires. The ignition characteristics of the forest fuels examined were related to thermogravimetric analysis data. The DTG curves showed that the mass changes related to cellulose decomposition in the temperature range of 320–370 °C are greatly responsible for the ignition behavior of the species tested. In addition, the mass of volatiles evolving between 120–160 °C has a significant effect on the ignitability. On the contrary, the inorganic ash content of forest fuels, measured by atomic absorption spectroscopy, seems to play an insignificant role on the ignitability characteristics of the forest fuels examined.  相似文献   

10.
JP-10 (exo-tetrahydrodicyclopentadiene, C10H16) ignition delay times were measured in a preheated shock tube. The vapor pressures of the JP-10 were measured directly by using a high-precision vacuum gauge, to remedy the difficulty in determining the gaseous concentrations of heavy hydrocarbon fuel arising from the adsorption on the wall in shock tube experiments. The whole variation of pressure and emission of the OH or CH radicals were observed in the ignition process by a pressure transducer and a photomultiplier with a monochromator. The emission of the OH or CH radicals was used to identify the time to ignition. Experiments were performed over the pressure range of 151-556 kPa, temperature range of 1000-2100 K, fuel concentrations of 0.1%-0.55% mole fraction, and stoichiometric ratios of 0.25, 0.5, 1.0 and 2.0. The experimental results show that for the lower and higher temperature ranges, there are different dependency relationships of the ignition time on the temperature and the concentrations of JP-10 and oxygen.  相似文献   

11.
A comprehensive and hierarchical optimization of a joint hydrogen and syngas combustion mechanism has been carried out. The Kéromnès et al. (Combust Flame, 2013, 160, 995–1011) mechanism for syngas combustion was updated with our recently optimized hydrogen combustion mechanism (Varga et al., Proc Combust Inst, 2015, 35, 589–596) and optimized using a comprehensive set of direct and indirect experimental data relevant to hydrogen and syngas combustion. The collection of experimental data consisted of ignition measurements in shock tubes and rapid compression machines, burning velocity measurements, and species profiles measured using shock tubes, flow reactors, and jet‐stirred reactors. The experimental conditions covered wide ranges of temperatures (800–2500 K), pressures (0.5–50 bar), equivalence ratios (? = 0.3–5.0), and C/H ratios (0–3). In total, 48 Arrhenius parameters and 5 third‐body collision efficiency parameters of 18 elementary reactions were optimized using these experimental data. A large number of directly measured rate coefficient values belonging to 15 of the reaction steps were also utilized. The optimization has resulted in a H2/CO combustion mechanism, which is applicable to a wide range of conditions. Moreover, new recommended rate parameters with their covariance matrix and temperature‐dependent uncertainty ranges of the optimized rate coefficients are provided. The optimized mechanism was compared to 19 recent hydrogen and syngas combustion mechanisms and is shown to provide the best reproduction of the experimental data.  相似文献   

12.
煤油自点火特性的实验研究   总被引:6,自引:0,他引:6  
在加热激波管中利用反射激波点火,采用壁端压力和CH*发射光作为点火指示信号,测量了气相煤油/空气混合物的点火延时,点火温度为1100-1500K,压力为2.0×105和4.0×105Pa,化学计量比(Φ)为0.2、1.0和2.0.分析了点火温度、压力和化学计量比对点火延时的影响.结果显示,化学计量比为1.0和2.0时活化能几乎是相同的,但与化学计量比为0.2时的活化能差异很大,拟合得到了不同化学计量比条件下点火延时随温度变化的关系式.点火延时与已有的动力学机理进行对比,实验结果与Honnet等人的动力学机理吻合得很好.对不同化学计量比条件下的反应进行了敏感度分析,结果表明在化学计量比为0.2时,对点火延时敏感的关键反应与化学计量比为1.0时的有很大差异.  相似文献   

13.
14.
An IR laser absorption diagnostic has been further developed for accurate and sensitive time‐resolved measurements of ethylene in shock tube kinetic experiments. The diagnostic utilizes the P14 line of a tunable CO2 gas laser at 10.532 μm (the (0 0 1) → (1 0 0) vibrational band) and achieves improved signal‐to‐noise ratio by using IR photovoltaic detectors and accurate identification of the P14 line via an MIR wavemeter. Ethylene absorption cross sections were measured over 643–1959 K and 0.3–18.6 atm behind both incident and reflected shock waves, showing evident exponential decay with temperature. Very weak pressure dependence was observed over the pressure range of 1.2–18.6 atm. By measuring ethylene decomposition time histories at high‐temperature conditions (1519–1895 K, 2.0–2.8 atm) behind reflected shocks, the rate coefficient of the dominant elementary reaction C2H4 + M → C2H2 + H2 + M was determined to be k1 = (2.6 ± 0.5) × 1016exp(?34,130/T, K) cm3 mol?1 s?1 with low data scatter. Ethylene concentration time histories were also measured during the oxidation of 0.5% C2H4/O2/Ar mixtures varying in equivalence ratio from 0.25 to 2. Initial reflected shock conditions ranged from 1267 to 1440 K and 2.95 to 3.45 atm. The measured time histories were compared to the modeled predictions of four ethylene oxidation mechanisms, showing excellent agreement with the Ranzi et al. mechanism (updated in 2011). This diagnostic scheme provides a promising tool for the study and validation of detailed hydrocarbon pyrolysis and oxidation mechanisms of fuel surrogates and realistic fuels. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 423–432, 2012  相似文献   

15.
FT‐IR spectroscopic and thermodynamic measurements were designed to explore the effect of a macromolecular crowder, dextran, on the temperature and pressure‐dependent phase diagram of the protein Ribonuclease A (RNase A), and we compare the experimental data with approximate theoretical predictions based on configuration entropy. Exploring the crowding effect on the pressure‐induced unfolding of proteins provides insight in protein stability and folding under cell‐like dense conditions, since pressure is a fundamental thermodynamic variable linked to molecular volume. Moreover, these studies are of relevance for understanding protein stability in deep‐sea organisms, which have to cope with pressures in the kbar range. We found that not only temperature‐induced equilibrium unfolding of RNase A, but also unfolding induced by pressure is markedly prohibited in the crowded dextran solutions, suggesting that crowded environments such as those found intracellularly, will also oppress high‐pressure protein unfolding. The FT‐IR spectroscopic measurements revealed a marked increase in unfolding pressure of 2 kbar in the presence of 30 wt % dextran. Whereas the structural changes upon thermal unfolding of the protein are not significantly influenced in the presence of the crowding agent, through stabilization by dextran the pressure‐unfolded state of the protein retains more ordered secondary structure elements, which seems to be a manifestation of the entropic destabilization of the unfolded state by crowding.  相似文献   

16.
正十一烷/空气在宽温度范围下着火延迟的激波管研究   总被引:2,自引:0,他引:2  
在加热激波管上测量了气相正十一烷/空气混合物的着火延迟时间,着火温度为宽温度范围731-1399 K,着火压力在2.02 × 105和10.10 × 105 Pa附近,化学计量比分别为0.5、1.0和2.0。通过监测管侧壁观测点处的反射激波压力和OH*发射光测出着火延迟时间。实验结果显示:在910 K以上,着火延迟时间随着火温度的降低而变长,从910到780 K,着火延迟时间随着火温度的降低而变短(显示出了负温度系数效应),在780 K以下,着火延迟时间随着火温度的降低再次变长。在所研究的压力下,着火压力的增加使着火时间变短。化学计量比对着火延迟的影响在着火压力为2.02 × 105和10.10 × 105 Pa时是不同的,与在高温区相比,着火延迟在低温区对化学计量比非常敏感。在整个温度范围内,当前实验结果和LLNL(LawrenceLivermore National Laboratory)机理的预测值表现出了很好的一致性。现在的正十一烷/空气的着火数据和先前实验测量的正庚烷/空气、正癸烷/空气和正十二烷/空气的着火延迟时间相比较显示了着火延迟时间随着直链烷碳原子数的增加而减小。敏感度分析显示,高、低温条件下影响正十一烷着火延迟过程的反应是显著不同的。在高温条件下起最大促进作用的反应是H + O2=O+OH,然而在低温条件下,起最大促进作用的反应是过氧十一烷基(C11H23O2)的异构化反应。本文研究首次提供了正十一烷/空气的激波管着火延迟时间。  相似文献   

17.
Ignition delay times for cyclopentane/air and cyclohexane/air mixtures were measured in a shock tube at temperatures of 847–1379 K, pressures of 11–61 atm, and equivalence ratios of ? = 1.0, 0.5, and 0.25. Ignition times were determined using electronically excited OH emission monitored through the shock tube endwall and piezoelectric pressure measurements made in the shock tube sidewall. The dependence of ignition time on pressure, temperature, and equivalence ratio is quantified and correlations for ignition time formulated. Measured ignition times are compared to kinetic modeling predictions from four recently published mechanisms. The data presented provide a database for the validation of cycloalkane kinetic mechanisms at the elevated pressures found in practical combustion engines. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 624–634, 2008  相似文献   

18.
Plasma Assisted Low Temperature Combustion   总被引:2,自引:0,他引:2  
This paper presents recent kinetic and flame studies in plasma assisted low temperature combustion. First, the kinetic pathways of plasma chemistry to enhance low temperature fuel oxidation are discussed. The impacts of plasma chemistry on fuel oxidation pathways at low temperature conditions, substantially enhancing ignition and flame stabilization, are analyzed base on the ignition and extinction S-curve. Secondly, plasma assisted low temperature ignition, direct ignition to flame transition, diffusion cool flames, and premixed cool flames are demonstrated experimentally by using dimethyl ether and n-heptane as fuels. The results show that non-equilibrium plasma is an effective way to accelerate low temperature ignition and fuel oxidation, thus enabling the establishment of stable cool flames at atmospheric pressure. Finally, the experiments from both a non-equilibrium plasma reactor and a photolysis reactor are discussed, in which the direct measurements of intermediate species during the low temperature oxidations of methane/methanol and ethylene are performed, allowing the investigation of modified kinetic pathways by plasma-combustion chemistry interactions. Finally, the validity of kinetic mechanisms for plasma assisted low temperature combustion is investigated. Technical challenges for future research in plasma assisted low temperature combustion are then summarized.  相似文献   

19.
戊酸甲酯是生物柴油和长链脂类燃烧过程中的中间产物之一。迄今为止,文献中还没有戊酸甲酯点火延迟的实验结果,因此对其点火特性的研究是必要的。在本文工作中,于反射激波后测量了戊酸甲酯/空气和戊酸甲酯/4%氧气/氩气的点火延迟时间。实验条件为:戊酸甲酯/空气点火温度1050–1350 K,点火压力1.5 × 105和16 × 105 Pa,当量比0.5、1和2;戊酸甲酯/4%氧气/氩气点火温度1210–1410 K,点火压力3.5 × 105和7 × 105 Pa,当量比0.75和1.25。点火延迟时间由在距离激波管端面15毫米处的测量点测到的反射激波到达信号和CH自由基信号所决定。所得实验结果显示:对于戊酸甲酯/空气和戊酸甲酯/4%氧气/氩气,温度或压力的增加都一定会使它们的点火延迟时间变短,但对于戊酸甲酯/空气,当量比对其点火延迟时间的影响在高低压下却是不同的(16 × 105 Pa: τign = 5.43 × 10−6Ф−0.411exp(1.73 × 102/RT),1.5 × 105 Pa: τign = 7.58 × 10−7Ф0.193exp(2.11 × 102/RT)。当压力为3.5 × 105–7 × 105 Pa时,还获得了戊酸甲酯/4%氧气/氩气点火延迟时间随点火条件的变化关系:τign = 2.80 × 10−5(10−5P)−0.446±0.032Ф0.246±0.044exp((1.88 ± 0.03) × 102/RT)。这些关系式反映了点火延迟时间对温度、压力和当量比的依赖关系,且有助于将实验数据归一到特定条件下进行比较。在本文实验条件下,由于戊酸甲酯/空气的燃料浓度远大于戊酸甲酯/4%氧气/氩气的燃料浓度,所测戊酸甲酯/空气的点火延迟时间远短于戊酸甲酯/4%氧气/氩气的点火延迟时间。通过对戊酸甲酯和其它长链脂类的点火特性比较,发现在相对低温时(空气中1200 K以下,氩气中1280 K以下),戊酸甲酯的点火延迟时间要长于其它长链脂类的点火延迟时间。已有的两个戊酸甲酯化学动力学机理都不能很好地预测本文实验结果,对戊酸甲酯机理的进一步完善是需要的。敏感度分析结果表明,支链反应H + O2 = O + OH对戊酸甲酯的高温点火起着最强的促进作用。据我们所知,本文首次报道了戊酸甲酯的高温点火延迟实验数据,研究结果对了解戊酸甲酯的点火特性非常重要,并且为完善戊酸甲酯的化学动力学机理提供了实验依据。  相似文献   

20.
An updated H2/O2 kinetic model based on that of Li et al. (Int J Chem Kinet 36, 2004, 566–575) is presented and tested against a wide range of combustion targets. The primary motivations of the model revision are to incorporate recent improvements in rate constant treatment and resolve discrepancies between experimental data and predictions using recently published kinetic models in dilute, high‐pressure flames. Attempts are made to identify major remaining sources of uncertainties, in both the reaction rate parameters and the assumptions of the kinetic model, affecting predictions of relevant combustion behavior. With regard to model parameters, present uncertainties in the temperature and pressure dependence of rate constants for HO2 formation and consumption reactions are demonstrated to substantially affect predictive capabilities at high‐pressure, low‐temperature conditions. With regard to model assumptions, calculations are performed to investigate several reactions/processes that have not received much attention previously. Results from ab initio calculations and modeling studies imply that inclusion of H + HO2 = H2O + O in the kinetic model might be warranted, though further studies are necessary to ascertain its role in combustion modeling. In addition, it appears that characterization of nonlinear bath‐gas mixture rule behavior for H + O2(+ M) = HO2(+ M) in multicomponent bath gases might be necessary to predict high‐pressure flame speeds within ~15%. The updated model is tested against all of the previous validation targets considered by Li et al. as well as new targets from a number of recent studies. Special attention is devoted to establishing a context for evaluating model performance against experimental data by careful consideration of uncertainties in measurements, initial conditions, and physical model assumptions. For example, ignition delay times in shock tubes are shown to be sensitive to potential impurity effects, which have been suggested to accelerate early radical pool growth in shock tube speciation studies. In addition, speciation predictions in burner‐stabilized flames are found to be more sensitive to uncertainties in experimental boundary conditions than to uncertainties in kinetics and transport. Predictions using the present model adequately reproduce previous validation targets and show substantially improved agreement against recent high‐pressure flame speed and shock tube speciation measurements. Comparisons of predictions of several other kinetic models with the experimental data for nearly the entire validation set used here are also provided in the Supporting Information. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 44: 444–474, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号