首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this article, we develop a higher order numerical approximation for time dependent singularly perturbed differential‐difference convection‐diffusion equations. A priori bounds on the exact solution and its derivatives, which are useful for the error analysis of the numerical method are given. We approximate the retarded terms of the model problem using Taylor's series expansion and the resulting time‐dependent singularly perturbed problem is discretized by the implicit Euler scheme on uniform mesh in time direction and a special hybrid finite difference scheme on piecewise uniform Shishkin mesh in spatial direction. We first prove that the proposed numerical discretization is uniformly convergent of , where and denote the time step and number of mesh‐intervals in space, respectively. After that we design a Richardson extrapolation scheme to increase the order of convergence in time direction and then the new scheme is proved to be uniformly convergent of . Some numerical tests are performed to illustrate the high‐order accuracy and parameter uniform convergence obtained with the proposed numerical methods.  相似文献   

2.
The work presents a novel coupling of the Laplace Transform and the compact fourth‐order finite‐difference discretization scheme for the efficient and accurate solution of linear time‐fractional nonhomogeneous diffusion equations subject to both Dirichlet and Neumann boundary conditions. A translational transformation of the dependent variable ensures the Caputo derivative is aligned with the Riemann‐Louiville fractional derivative. The resulting scheme is computationally efficient and shown to be uniquely solvable in all cases, accurate and convergent to in the spatial domain. The convergence rates in the temporal domain are contour dependent but exhibit geometric convergence. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1184–1199, 2016  相似文献   

3.
In this article, we apply a high‐order difference scheme for the solution of some time fractional partial differential equations (PDEs). The time fractional Cattaneo equation and the linear time fractional Klein–Gordon and dissipative Klein–Gordon equations will be investigated. The time fractional derivative which has been described in the Caputo's sense is approximated by a scheme of order , and the space derivative is discretized with a fourth‐order compact procedure. We will prove the solvability of the proposed method by coefficient matrix property and the unconditional stability and ‐convergence with the energy method. Numerical examples demonstrate the theoretical results and the high accuracy of the proposed scheme. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1234–1253, 2014  相似文献   

4.
In this article, a decoupled and linearized compact finite difference scheme is proposed for solving the coupled nonlinear Schrödinger equations. The new scheme is proved to preserve the total mass and energy which are defined by using a recursion relationship. Besides the standard energy method, an induction argument together with an H1 technique are introduced to establish the optimal point‐wise error estimate of the proposed scheme. Without imposing any constraints on the grid ratios, the convergence order of the numerical solution is proved to be of with mesh size h and time step τ. Numerical results are reported to verify the theoretical analysis, and collision of two solitary waves are also simulated. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 840–867, 2017  相似文献   

5.
In this article, a block‐centered finite difference method for fractional Cattaneo equation is introduced and analyzed. The unconditional stability and the global convergence of the scheme are proved rigorously. Some a priori estimates of discrete norm with optimal order of convergence both for pressure and velocity are established on nonuniform rectangular grids. Moreover, the applicability and accuracy of the scheme are demonstrated by numerical experiments to support our theoretical analysis.  相似文献   

6.
In this article, based on the idea of combing symmetrical fractional centred difference operator with compact technique, a series of even‐order numerical differential formulas (named the fractional‐compact formulas) are established for the Riesz derivatives with order . Properties of coefficients in the derived formulas are studied in details. Then applying the constructed fourth‐order formula, a difference scheme is proposed to solve the Riesz spatial telegraph equation. By the energy method, the constructed numerical algorithm is proved to be stable and convergent with order , where τ and h are the temporal and spatial stepsizes, respectively. Finally, several numerical examples are presented to verify the theoretical results.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1754–1794, 2017  相似文献   

7.
In this article, we study fast discontinuous Galerkin finite element methods to solve a space‐time fractional diffusion‐wave equation. We introduce a piecewise‐constant discontinuous finite element method for solving this problem and derive optimal error estimates. Importantly, a fast solution technique to accelerate Toeplitz matrix‐vector multiplications which arise from discontinuous Galerkin finite element discretization is developed. This fast solution technique is based on fast Fourier transform and it depends on the special structure of coefficient matrices. In each temporal step, it helps to reduce the computational work from required by the traditional methods to log , where is the size of the coefficient matrices (number of spatial grid points). Moreover, the applicability and accuracy of the method are verified by numerical experiments including both continuous and discontinuous examples to support our theoretical analysis.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 2043–2061, 2017  相似文献   

8.
In this article, a Fourier pseudospectral method, which preserves the conforal conservation la, is proposed for solving the damped nonlinear Schrödinger equation. Based on the energy method and the semi‐norm equivalence between the Fourier pseudospectral method and the finite difference method, a priori estimate for the new method is established, which shows that the proposed method is unconditionally convergent with order of in the discrete ‐norm, where is the time step and is the number of collocation points used in the spectral method. Some numerical results are addressed to confirm our theoretical analysis.  相似文献   

9.
An efficient H1‐Galerkin mixed finite element method (MFEM) is presented with and zero order Raviart‐Thomas elements for the nonlinear Sobolev equations. On one hand, the existence and uniqueness of the solutions of the semidiscrete approximation scheme are proved and the super close results of order for the original variable u in a broken H1 norm and the auxiliary variable in norm are deduced without the boundedness of the numerical solution in ‐norm. Conversely, a linearized Crank‐Nicolson fully discrete scheme with the unconditional super close property is also developed through a new approach, while previous literature always require certain time step conditions (see the references below). Finally, a numerical experiment is included to illustrate the feasibility of the proposed method. Here h is the subdivision parameter and τ is the time step.  相似文献   

10.
Motivated by the idea that staggered‐grid methods give a greater stability and give energy conservation, this article presents a new family of high‐order implicit staggered‐grid finite difference methods with any order of accuracy to approximate partial differential equations involving second‐order derivatives. In particular, we numerically analyze our new methods for the solution of the one‐dimensional acoustic wave equation. The implicit formulation is based on the plane wave theory and the Taylor series expansion and only involves the solution of tridiagonal matrix equations resulting in an attractive method with higher order of accuracy but nearly the same computation cost as those of explicit formulation. The order of accuracy of the proposal staggered formulas are similar to the methods with conventional grids for a ‐point operator: the explicit formula is th‐order and the implicit formula is th‐order; however, the results demonstrate that new staggered methods are superior in terms of stability properties to the classical methods in the context of solving wave equations.  相似文献   

11.
In this article, a fourth‐order compact and conservative scheme is proposed for solving the nonlinear Klein‐Gordon equation. The equation is discretized using the integral method with variational limit in space and the multidimensional extended Runge‐Kutta‐Nyström (ERKN) method in time. The conservation law of the space semidiscrete energy is proved. The proposed scheme is stable in the discrete maximum norm with respect to the initial value. The optimal convergent rate is obtained at the order of in the discrete ‐norm. Numerical results show that the integral method with variational limit gives an efficient fourth‐order compact scheme and has smaller error, higher convergence order and better energy conservation for solving the nonlinear Klein‐Gordon equation compared with other methods under the same condition. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1283–1304, 2017  相似文献   

12.
The Cable equation is one of the most fundamental equations for modeling neuronal dynamics. In this article, we consider a high order compact finite difference numerical solution for the fractional Cable equation, which is a generalization of the classical Cable equation by taking into account the anomalous diffusion in the movement of the ions in neuronal system. The resulting finite difference scheme is unconditionally stable and converges with the convergence order of in maximum norm, 1‐norm and 2‐norm. Furthermore, we present a fast solution technique to accelerate Toeplitz matrix‐vector multiplications arising from finite difference discretization. This fast solution technique is based on a fast Fourier transform and depends on the special structure of coefficient matrices, and it helps to reduce the computational work from required by traditional methods to without using any lossy compression, where and τ is the size of time step, and h is the size of space step. Moreover, we give a compact finite difference scheme and consider its stability analysis for two‐dimensional fractional Cable equation. The applicability and accuracy of the scheme are demonstrated by numerical experiments to support our theoretical analysis.  相似文献   

13.
A class of time‐dependent singularly perturbed convection‐diffusion problems with retarded terms arising in computational neuroscience is considered. In particular, a numerical scheme for the parabolic convection‐diffusion problem where the second‐order derivative with respect to the spatial direction is multiplied by a small perturbation parameter and the shifts are of is constructed. The Taylor series expansion is used to tackle the shift terms. The continuous problem is semidiscretized using the Crank‐Nicolson finite difference method in the temporal direction and the resulting set of ordinary differential equations is discretized using a midpoint upwind finite difference scheme on an appropriate piecewise uniform mesh, which is dense in the boundary layer region. It is shown that the proposed numerical scheme is second‐order accurate in time and almost first‐order accurate in space with respect to the perturbation parameter . To validate the computational results and efficiency of the method some numerical examples are encountered and the numerical results are compared with some existing results. It is observed that the numerical approximations are fairly good irrespective of the size of the delay and the advance till they are of . The effect of the shifts on the boundary layer has also been observed.  相似文献   

14.
In this article, two kinds of high‐order compact finite difference schemes for second‐order derivative are developed. Then a second‐order numerical scheme for a Riemann–Liouvile derivative is established based on a fractional centered difference operator. We apply these methods to a fractional anomalous subdiffusion equation to construct two kinds of novel numerical schemes. The solvability, stability, and convergence analysis of these difference schemes are studied by using Fourier method. The convergence orders of these numerical schemes are and , respectively. Finally, numerical experiments are displayed which are in line with the theoretical analysis. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 213–242, 2016  相似文献   

15.
We propose a decoupled and linearized fully discrete finite element method (FEM) for the time‐dependent Ginzburg–Landau equations under the temporal gauge, where a Crank–Nicolson scheme is used for the time discretization. By carefully designing the time‐discretization scheme, we manage to prove the convergence rate , where τ is the time‐step size and r is the degree of the finite element space. Due to the degeneracy of the problem, the convergence rate in the spatial direction is one order lower than the optimal convergence rate of FEMs for parabolic equations. Numerical tests are provided to support our error analysis. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1279–1290, 2014  相似文献   

16.
In this article, first, we establish some compact finite difference schemes of fourth‐order for 1D nonlinear Kuramoto–Tsuzuki equation with Neumann boundary conditions in two boundary points. Then, we provide numerical analysis for one nonlinear compact scheme by transforming the nonlinear compact scheme into matrix form. And using some novel techniques on the specific matrix emerged in this kind of boundary conditions, we obtain the priori estimates and prove the convergence in norm. Next, we analyze the convergence and stability for one of the linearized compact schemes. To obtain the maximum estimate of the numerical solutions of the linearized compact scheme, we use the mathematical induction method. The treatment is that the convergence in norm is obtained as well as the maximum estimate, further the convergence in norm. Finally, numerical experiments demonstrate the theoretical results and show that one of the linearized compact schemes is more accurate, efficient and robust than the others and the previous. It is worthwhile that the compact difference methods presented here can be extended to 2D case. As an example, we present one nonlinear compact scheme for 2D Ginzburg–Landau equation and numerical tests show that the method is accurate and effective. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 2080–2109, 2015  相似文献   

17.
We present a fourth‐order Hermitian box‐scheme (HB‐scheme) for the Poisson problem in a cube. A single‐nonstaggered regular grid is used supporting the discrete unknowns u and . The scheme is fourth‐order accurate for u and in norm. The fast numerical resolution uses a matrix capacitance method, resulting in a computational complexity of . Numerical results are reported on several examples including nonseparable problems. The present scheme is the extension to the three‐dimensional case of the HB‐scheme presented in Abbas and Croisille [J Sci Comp 49 (2011), 239–267]. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 609–629, 2015  相似文献   

18.
To improve the convergence rate in L2 norm from suboptimal to optimal for both electrostatic potential and ionic concentrations in Poisson‐Nernst‐Planck (PNP) system, we propose the mixed finite element method in this article to discretize the electrostatic potential equation, and still use the standard finite element method to discretize the time‐dependent ionic concentrations equations. Optimal error estimates in norm for the electrostatic potential, and in and norms for the ionic concentrations are attained. As a by‐product, the electric field can also achieve a higher approximation order in contrast with the standard finite element method for PNP system. Numerical experiments are performed to validate the theoretical results.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1924–1948, 2017  相似文献   

19.
In this article, stabilization result for the Benjamin‐Bona‐Mahony‐Burgers' (BBM‐B) equation, that is, convergence of unsteady solution to steady state solution is established under the assumption that a linearized steady state eigenvalue problem has a minimal positive eigenvalue. Based on appropriate conditions on the forcing function, exponential decay estimates in , and ‐norms are derived, which are valid uniformly with respect to the coefficient of dispersion as it tends to zero. It is, further, observed that the decay rate for the BBM‐B equation is smaller than that of the decay rate for the Burgers equation. Then, a semidiscrete Galerkin method for spatial direction keeping time variable continuous is considered and stabilization results are discussed for the semidiscrete problem. Moreover, optimal error estimates in ‐norms preserving exponential decay property are established using the steady state error estimates. For a complete discrete scheme, a backward Euler method is applied for the time discretization and stabilization results are again proved for the fully discrete problem. Subsequently, numerical experiments are conducted, which verify our theoretical results. The article is finally concluded with a brief discussion on an extension to a multidimensional nonlinear Sobolev equation with Burgers' type nonlinearity.  相似文献   

20.
The finite analytic numerical method for 3D quasi‐Laplace equation with conductivity in full tensor form is constructed in this article. For cubic grid system, the gradient of the potential variable will diverge when tending to the common edge joining the four grids with different conductivities. However, the potential gradient along the tangential direction is of limited value. As a consequence, the 3D quasi‐Laplace equations will behave as a quasi‐2D one. An approximate analytical solution of the 3D quasi‐Laplace equation can be found around the common edge, which is expressed as a combination of a power‐law function and a linear function. With the help of this approximate analytical solution, a 3D finite analytical numerical scheme is then constructed. Numerical examples show that the proposed numerical scheme can provide rather accurate solutions only with or subdivisions. More important, the convergent speed of the numerical scheme is independent of the conductivity heterogeneity. In contrast, when using the traditional numerical schemes, typically such as the MPFA method, the refinement ratio for the grid cell needs to increase dramatically to get an accurate result for the strong heterogeneous case.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1475–1492, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号