首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two novel K/Mn phosphate hydrates, namely, dipotassium trimanganese dipyrophosphate dihydrate, K2Mn3(H2O)2[P2O7]2, (I), and potassium manganese dialuminium triphosphate dihydrate, KMn(H2O)2[Al2(PO4)3], (II), were obtained in the form of single crystals during a single hydrothermal synthesis experiment. Their crystal structures were studied by X‐ray diffraction. Both new compounds are members of the morphotropic series of phosphates with the following formulae: A2M3(H2O)2[P2O7]2, where A = K, NH4, Rb or Na and M = Mn, Fe, Co or Ni, and AM2+(H2O)2[M3+2(PO4)3], where A = Cs, Rb, K, NH4 or (H3O); M2+ = Mn, Fe, Co or Ni; and M3+ = Al, Ga or Fe. A detailed crystal chemical analysis revealed correlations between the unit‐cell parameters of the members of the series, their structural features and the sizes of the cations. It has been shown that a mixed type anionic framework is formed in (II) by aluminophosphate [(AlO2)2(PO4)2] layers, with a cationic topology similar to the Si/Al‐topology of the crystal structures of feldspars. A study of the magnetic susceptibility of (II) demonstrates a paramagnetic behaviour of the compound.  相似文献   

2.
A new compound, [Co(H2O)6][{Co2(H2O)6}{Co(H2PO4)2}{(PO4)6(HPO4)18(Mo16O32)Co16(H2O)18}] · 23H2O (1), has been prepared under mild hydrothermal conditions and structurally characterized by elemental analyses, i.r. spectrum, XPS spectrum and single-crystal X-ray diffraction. Compound (1) consists of [(Mo16O32)Co16- (H2O)18(PO4)6(HPO4)18] wheel-shape clusters as the structural motif, which are covalently linked by [Co2(H2O)6] and [Co(H2PO4)2] fragments to form a two-dimensional layer framework. It is the first time that such wheels have been linked by both mononuclear and dimeric CoII octahedra. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

3.
AgCo3PO4(HPO4)2     
The structure of the hydro­thermally synthesized compound AgCo3PO4(HPO4)2, silver tricobalt phosphate bis­(hydrogen phosphate), consists of edge‐sharing CoO6 chains linked together by the phosphate groups and hydrogen bonds. The three‐dimensional framework delimits two types of tunnels which accommodate Ag+ cations and OH groups. The title compound is isostructural with the compounds AM3H2(XO4)3 (A = Na or Ag, M = Co or Mn, and X = P or As) of the alluaudite structure type.  相似文献   

4.
Two new manganese(II) phosphonates, (NH4)Mn2.5[(O3PCH(OH)CO2)2(H2O)] ( 1 ) and [NH3(CH2)4NH3]0.5Mn2.5[(O3PCH(OH)CO2)2(H2O)] ( 2 ) have been synthesized under hydrothermal conditions and structurally characterized by single‐crystal X‐ray diffraction as well as with infrared spectroscopy, elemental analysis and thermogravimetric analysis. The two isomorphous compounds feature a 3D framework structure. The Mn(1)O6 and Mn(3)O5 polyhedra are bridged by the CPO3 tetraheda into a MnII phosphonate layer in ac‐plane. Mn(2)O6 polyhedra are linked to each other by CPO3 tetraheda to form infinite chains, which are connected to layers by carboxylate groups to form a 3D framework structure with channels along the a‐ and c‐axis, respectively. The NH4+ ions or protonated 1, 4‐butylenediamine cations are located inside the channels along the a axis.  相似文献   

5.
Two new three‐dimensional neutral open‐framework tin(II) phosphates, Sn5O2(PO4)2 and Sn4O(PO4)2, were synthesized under hydrothermal conditions with different ratio of tin(II) oxalate, phosphoric acid and 4,4′‐diaminodiphenylmethane. Their crystal structures have been solved by single‐crystal X‐ray diffraction methods. Sn5O2(PO4)2 crystallizes in the space group and contains six‐membered ring and twelve‐membered ring channels running parallel to the b axis. Sn4O(PO4)2 crystallizes in the space group P21/n and contains intersecting eight‐membered ring channels. These two compounds have rare trigonal‐planar Sn3O.  相似文献   

6.
The structures of five metal complexes containing the 4‐oxo‐4H‐pyran‐2,6‐dicarboxylate dianion illustrate the remarkable coordinating versatility of this ligand and the great structural diversity of its complexes. In tetraaquaberyllium 4‐oxo‐4H‐pyran‐2,6‐dicarboxylate, [Be(H2O)4](C7H2O6), (I), the ions are linked by eight independent O—H...O hydrogen bonds to form a three‐dimensional hydrogen‐bonded framework structure. Each of the ions in hydrazinium(2+) diaqua(4‐oxo‐4H‐pyran‐2,6‐dicarboxylato)calcate, (N2H6)[Ca(C7H2O6)2(H2O)2], (II), lies on a twofold rotation axis in the space group P2/c; the anions form hydrogen‐bonded sheets which are linked into a three‐dimensional framework by the cations. In bis(μ‐4‐oxo‐4H‐pyran‐2,6‐dicarboxylato)bis[tetraaquamanganese(II)] tetrahydrate, [Mn2(C7H2O6)2(H2O)8]·4H2O, (III), the metal ions and the organic ligands form a cyclic centrosymmetric Mn2(C7H2O6)2 unit, and these units are linked into a complex three‐dimensional framework structure containing 12 independent O—H...O hydrogen bonds. There are two independent CuII ions in tetraaqua(4‐oxo‐4H‐pyran‐2,6‐dicarboxylato)copper(II), [Cu(C7H2O6)(H2O)4], (IV), and both lie on centres of inversion in the space group P; the metal ions and the organic ligands form a one‐dimensional coordination polymer, and the polymer chains are linked into a three‐dimensional framework containing eight independent O—H...O hydrogen bonds. Diaqua(4‐oxo‐4H‐pyran‐2,6‐dicarboxylato)cadmium monohydrate, [Cd(C7H2O6)(H2O)2]·H2O, (V), forms a three‐dimensional coordination polymer in which the organic ligand is coordinated to four different Cd sites, and this polymer is interwoven with a complex three‐dimensional framework built from O—H...O hydrogen bonds.  相似文献   

7.
Three novel complexes, namely, penta‐μ‐acetato‐bis(μ2‐2‐{[2‐(6‐chloropyridin‐2‐yl)hydrazinylidene]methyl}‐6‐methoxyphenolato)‐μ‐formato‐tetramanganese(II), [Mn4(C13H11ClN3O2)2(C2H3O2)5.168(CHO2)0.832], 1 , hexa‐μ2‐acetato‐bis(μ2‐2‐{[2‐(6‐bromopyridin‐2‐yl)hydrazinylidene]methyl}‐6‐methoxyphenolato)tetramanganese(II), [Mn4(C13H11BrN3O2)2(C2H3O2)6], 2 , and catena‐poly[[μ2‐acetato‐acetatoaqua(μ2‐2‐{[2‐(6‐chloropyridin‐2‐yl)hydrazinylidene]methyl}‐6‐methoxyphenolato)dimanganese(II)]‐μ2‐acetato], [Mn2(C13H11ClN3O2)(C2H3O2)3(H2O)]n, 3 , have been synthesized using solvothermal methods. Complexes 1 – 3 were characterized by IR spectroscopy, elemental analysis and single‐crystal X‐ray diffraction. Complexes 1 and 2 are tetranuclear manganese clusters, while complex 3 has a one‐dimensional network based on tetranuclear Mn4(L1)2(CH3COO)6(H2O)2 building units (L1 is 2‐{[2‐(6‐chloropyridin‐2‐yl)hydrazinylidene]methyl}‐6‐methoxyphenolate). Magnetic studies reveal that complexes 1 – 3 display dominant antiferromagnetic interactions between MnII ions through μ2‐O bridges. In addition, 1 – 3 also display favourable electrochemiluminescence (ECL) properties.  相似文献   

8.
Single crystals of the solid solution iron aluminium tris(dihydrogenphosphate), (Fe0.81Al0.19)(H2PO4)3, have been prepared under hydrothermal conditions. The compound is a new monoclinic variety (γ‐form) of iron aluminium phosphate (Fe,Al)(H2PO4)3. The structure is based on a two‐dimensional framework of distorted corner‐sharing MO6 (M = Fe, Al) polyhedra sharing corners with PO4 tetrahedra. Strong hydrogen bonds between the OH groups of the H2PO4 tetrahedra and the O atoms help to consolidate the crystal structure.  相似文献   

9.
The new ternary calcium indium(III) phosphate CaIn2(PO4)2(HPO4) with mixed octahedral-tetrahedral framework was synthesized through hydrothermal reaction of stoichiometric amounts of CaO and InCl3 with excess of H3PO4 and H2O at pH = 1. Single crystal x-ray diffraction studies show the compound to crystallize in monoclinic symmetry, space group P21/n (#14) with a = 657.08(6), b = 2023.7(2), c = 665.72(7) pm, β = 91.20(1)°, Z = 4 and R = 0.043. The framework is built up of dimers of edge-sharing InO6 octahedra forming In2O10 units sharing all their OXO ligands with PO4 tetrahedra, and HPO4 groups.  相似文献   

10.
Single crystals of oxidephosphates MTi2O2(PO4)2 [M: Fe (dark red), Co (pinkish red), Ni (green)] with edge‐lengths up to 0.4 mm were grown by chemical vapour transport. FeTi2O2(PO4)2 and CoTi2O2(PO4)2 are isotypic to NiTi2O2(PO4)2. The crystal structure of the latter was previously solved from powder data [FeTi2O2(PO4)2 (data for CoTi2O2(PO4)2 and NiTi2O2(PO4)2 in brackets): monoclinic, P21/c, Z = 2, a = 7.394(3) (7.381(6), 7.388(4)) Å, b = 7.396(2) (7.371(5), 7.334(10)) Å, c = 7.401(3) (7.366(6), 7.340(3)) Å, β = 120.20(3) (120.26(6), 120.12(4))°, R1 = 0.0393 (0.0309, 0.0539) wR2 = 0.1154 (0.0740, 0.1389), 2160 (1059, 1564) independent reflections, 75 (76, 77) variables]. The single‐crystal study allowed improved refinement using anisotropic displacement parameters, yielded lower standard deviations for the structural parameters and revealed a small amount of cation disordering. Twinning and cation disordering within the structures are rationalized by a detailed crystallographic classification of the MTi2O2(PO4)2 structure type in terms of group‐subgroup relations. The structure is characterized by a three‐dimensional network of [PO4] tetrahedra and [MIITi2O12] groups formed by face‐sharing of [MIIO6] and [TiO6] octahedra. Electronic absorption spectra of MTi2O2(PO4)2 in the UV/VIS/NIR region show rather large ligand‐field splittings for the strongly trigonally distorted chromophors [MIIO6] (M = Fe, Co, Ni) with interelectronic repulsion parameters beeing slightly smaller than in other phosphates. Interpretation of the spectra within the framework of the angular overlap model reveals a significant second‐sphere ligand field effect of TiIV ions on the electronic levels of the NiII and CoII.  相似文献   

11.
Yellowish single crystals of acidic mercury(I) phosphate (Hg2)2(H2PO4)(PO4) were obtained at 200 °C under hydrothermal conditions in 32% HF from a starting complex of microcrystalline (Hg2)2P2O7. Refinement of single crystal data converged at a conventional residual R[F2 > 2σ(F2)] = 3.8% (C2/c, Z = 8, a = 9.597(2) Å, b = 12.673(2) Å, c = 7.976(1) Å, β = 110.91(1)°, V = 906.2(2) Å3, 1426 independent reflections > 2σ out of 4147 reflections, 66 variables). The crystal structure consists of Hg22+‐dumbbells and discrete phosphate groups H2PO4 and PO43–. The Hg22+ pairs are built of two crystallographically independent Hg atoms with a distance d(Hg1–Hg2) = 2.5240(6) Å. The oxygen coordination sphere around the mercury atoms is asymmetric with three O atoms for Hg1 and four O atoms for Hg2. The oxygen atoms belong to the different PO4 tetrahedra, which in case of H2PO4‐groups are connected by hydrogen bonding. Upon heating over 230 °C, (Hg2)2(H2PO4)(PO4) condenses to (Hg2)2P2O7, which in turn disproportionates at higher temperatures into Hg2P2O7 and elemental mercury.  相似文献   

12.
The tetranuclear compound [Mo2(O2C‐tBu)3]2(μ‐C2O4) ( 1 ) that is prepared from [Mo2(O2C‐tBu)3]4 and oxalic acid, was reacted with MnI2 · 2THF to form the polyoxomolybdate compound [Mn(CH3OH)6] [Mo8O16(OCH3)8(C2O4)] ( 2 ) in a complex redox reaction. Crystals of 2 were analyzed by single‐crystal X‐ray diffraction showing a octanuclear polyoxomolybdate dianion in which the Mo=O moieties are alternately connected through μ‐oxo and μ‐methoxo units. Charge balance in 2 is realized by a manganese(II) cation that is octahedrally coordinated by methanol ligands. The crystal structure is dominated by strong hydrogen bond interactions of the O–H ··· O type of methanol molecules coordinated to manganese as well as additional methanol molecules in the crystal lattice.  相似文献   

13.
The transition metal dihydrogen hypodiphosphate hydrates K2[Co(H2P2O6)2(H2O)2] · H2O ( 1 ), K2[Ni(H2P2O6)2(H2O)2] · H2O ( 2 ), K2[Cu(H2P2O6)2(H2O)2] · H2O ( 3 ) and K2[Zn(H2P2O6)2(H2O)2] · H2O ( 4 ) were synthesized and characterized by single crystal structure determination. The compounds 1 – 4 crystallize isotypic in the monoclinic space group C2/m (no. 12) with two formula units in the unit cell. The crystal structure is built up by [H2P2O6]2– units in an eclipsed conformation, by the corresponding transition metal, potassium cations, and water molecules. The eclipsed conformation of the [H2P2O6]2– has not been previously observed in none of known hypodiphosphates(IV) analyzed via X‐ray diffraction. However, its proposed based on spectroscopic methods. FT‐IR/FIR and FT‐Raman spectra of the crystalline salts were recorded and the thermal behavior of the compounds was investigated.  相似文献   

14.
Rubidium tetramanganese tris(phosphate), RbMn4(PO4)3, has been synthesized as single crystals under hydrothermal conditions. The crystal structure was refined in the space group Pnnm (D2h12). It is argued that the size factor RM/RA, i.e. the ratio of the A+ ionic radius to the M2+ ionic radius, within the morphotropic series AM4(TO4)3 corresponds to a specific type of crystal structure. At low temperatures, the antiferromagnet superimposed on a buckled kagomé network in RbMn4(PO4)3 experiences a transition into a long‐range ordered state with finite spontaneous magnetization. First principles calculations provide the dominant magnetic exchange interactions both within and between the kagomé layers. The analysis of these interactions allows us to suggest a model of alternating ferromagnetic and antiferromagnetic arrangements within chains of Mn3 atoms.  相似文献   

15.
The First Vanadium(III) Borophosphate: Synthesis and Crystal Structure of CsV3(H2O)2[B2P4O16(OH)4] CsV3(H2O)2[B2P4O16(OH)4] was prepared under mild hydrothermal conditions (T = 165 °C) from mixtures of CsOH(aq), VCl3, H3BO3, and H3PO4 (molar ratio 1 : 1 : 1 : 2). The crystal structure was determined by X‐ray single crystal methods (monoclinic; space group C2/m, No. 12): a = 958.82(15) pm, b = 1840.8(4) pm, c = 503.49(3) pm; β = 110.675(4)°; Z = 2. The anionic partial structure contains oligomeric units [BP2O8(OH)2]5–, which are built up by a central BO2(OH)2 tetrahedron and two PO4 tetrahedra sharing common corners. VIII is octahedrally coordinated by oxygen of adjacent phosphate tetrahedra and OH groups of borate tetrahedra as well as oxygen of phosphate tetrahedra and H2O molecules, respectively (coordination octahedra VO4(OH)2 and VO4(H2O)2). The oxidation state +3 for vanadium was confirmed by measurements of the magnetic susceptibility. The trimeric borophosphate groups are connected via vanadium centres to form layers with octahedra‐tetrahedra ring systems, which are likewise linked via VIII‐coordination octahedra. Overall, a three‐dimensional framework constructed from VO4(OH)2 and VO4(H2O)2 octahedra as well as BO2(OH)2 and PO4 tetrahedra results. The structure contains channels running along [001], which are occupied by Cs+ in a distorted octahedral coordination (CsO4(H2O)2).  相似文献   

16.
Caesium aluminium dizirconium tetrakis[phosphate(V)], CsAlZr2(PO4)4, has been synthesized by high‐temperature reaction and studied by single‐crystal X‐ray diffraction at room temperature. This represents the first detailed structural analysis of an anhydrous phosphate containing both zirconium and aluminium. The structure features a complicated three‐dimensional framework of [AlZr2(PO4)4] constructed by PO4, AlO4 and ZrO6 polyhedra interconnected via corner‐sharing O atoms, and one‐dimensional Cs chains which are located in the infinite tunnels within the [AlZr2(PO4)4] framework, which run along the c axis. The Cs, Al, one P and two O atoms lie on a mirror plane, while a second P atom lies on a twofold axis.  相似文献   

17.
Xiaoyan You  Lixia Zhu  Jia Sun 《中国化学》2010,28(11):2174-2178
A novel organically templated copper pentaborate, [Cu(C3N2H4)4][Cu(CH3COO)2(C3N2H4)2(H2O)2]‐ [B5O6(OH)4]2, was synthesized by hydrothermal reaction and characterized by elemental analysis, single‐crystal X‐ray diffraction, FT‐IR spectroscopy, Raman spectroscopy and TGA. The crystal structure of this compound consists of two copper‐centered polyhedra and two discrete [B5O6(OH)4]? pentaborate anions, which are linked together through intensive hydrogen bonding interactions, forming a 3D framework with large channels along c axis. The discrete pentaborate anions form infinite layers by hydrogen bonds. Moreover, the two crystallographically different octahedral coppers are connected by common oxygen atom to form an infinite chain.  相似文献   

18.
The Mx Hy (A O4)z acid salts (M = Cs, Rb, K, Na, Li, NH4; A = S, Se, As, P) exhibit ferroelectric properties. The solid acids have low conductivity values and are of interest with regard to their thermal properties and proton conductivity. The crystal structure of caesium dihydrogen orthophosphate monohydrogen orthophosphate dihydrate, Cs3(H1.5PO4)2·2H2O, has been solved. The compound crystallizes in the space group Pbca and forms a structure with strong hydrogen bonds connecting phosphate tetrahedra that agrees well with the IR spectra. The dehydration of Cs3(H1.5PO4)2·2H2O with the loss of two water molecules occurs at 348–433 K. Anhydrous Cs3(H1.5PO4)2 is stable up to 548 K and is then converted completely into caesium pyrophosphate (Cs4P2O7) and CsPO3. Anhydrous Cs3(H1.5PO4)2 crystallizes in the monoclinic C 2 space group, with the unit‐cell parameters a = 11.1693 (4), b = 6.4682 (2), c = 7.7442 (3) Å and β = 71.822 (2)°. The conductivities of both compounds have been measured. In contrast to crystal hydrate Cs3(H1.5PO4)2·2H2O, the dehydrated form has rather low conductivity values of ∼6 × 10−6–10−8 S cm−1 at 373–493 K, with an activation energy of 0.91 eV.  相似文献   

19.
Ag6(VIVO)2(PO4)2(P2O7) was obtained by reaction of Ag3PO4 and (VO)2P2O7 (sealed ampoule, 550 °C, 3 d). The crystal structure of the new mixed ortho‐pyrophosphate was determined from X‐ray single‐crystal data [Pnma, Z = 4, a = 12.759(3) Å, b = 17.340(4) Å, c = 6.418(1) Å, R1 = 0.071, wR2 = 0.184 for 3174 unique reflections with Fo > 4σ(Fo), 141 variables]. Ag+ ions are located in between layers [(VIVO)2(PO4)2(P2O7)]6–. Equilibrium relations of the new phosphate to neighboring phases were determined. The electronic structure of the (VIV≡O)2+ group was investigated by polarized electronic absorption spectroscopy (ν̃1a = 9450 cm–1, ν̃1b = 9950 cm–1, ν̃2 = 14750 cm–1), EPR spectroscopy [X‐ and Q‐band, powder and single crystal, orthorhombic crystal g‐tensor with g1 = 1.9445(3), g2 = 1.9521(3), g3 = 1.9695(3)], and magnetic measurements (powder, μexp/μB = 1.71, Θp = –1.7 K).  相似文献   

20.
The novel zincophosphates UH‐6 (sum formula |[Co(diAMHsar)]| [Zn2(HPO4)3(PO4)] · H2O) and UH‐10 (sum formula |([Co(diAMHsar)])2| [{Zn2(HPO4)3(PO4)}2] · H2O) were synthesized in hydrothermal syntheses employing the chiral sarcophagine complex [Co(diAMHsar)]5+ as the structure‐directing agent. The inorganic part of UH‐6 consists of pearl‐like chains of alternating [ZnO4] and [PO4] tetrahedra, which are connected to the incorporated cobalt complex via numerous hydrogen bonds. UH‐10 was synthesized under similar conditions, but at higher reaction temperatures. In consequence, the crystal structures of UH‐6 and UH‐10 are closely related, although systematic disorder in UH‐10 and the lower symmetry result in a unit cell twice as large as the corresponding unit cell of UH‐6. Interestingly, in both zincophosphates only one enantiomer of the cobalt complex is present, despite the fact that a racemic mixture of the complex salt is used for synthesis. Thermogravimetric analysis and powder X‐ray diffraction of a thermally treated sample of UH‐6 reveals a phase transformation at ca. 300 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号