首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Xanthoceras sorbifolia Bunge husks were known for their abundant triterpenoids resource, which contributed to many bioactivities, such as antitumor, antiinflammatory and neuroprotection. The present study has led to the purification of a new triterpenoid saponin, 21β-O-acetyl-xanthohuskiside A (1), together with six known barrigenol derivatives (2–7), whose structures were authenticated on the basis of NMR, HR-MS, IR spectrum and acid hydrolysis experiment. Compound 7 showed more noteworthy cytotoxicity towards three human tumour cell lines (HCT-116, HepG-2 and U87-MG) than other compounds.  相似文献   

2.
Tangzhiqing formula, a Chinese herbal formula, is used for the treatment of type II diabetes and prediabetes. Although its effectiveness has been certified by clinical use, its absorbed chemical constituents are not comprehensively represented. Thence, in order to reveal potential bioactive components and metabolism of Tangzhiqing formula, an ultra‐high performance liquid chromatography with quadrupole time‐of‐flight mass spectrometry method was developed. A total of 86 absorbed components, including 38 prototype compounds and 48 metabolites, were identified in rat plasma, urine, and feces after oral administration of Tangzhiqing formula. This was the first systematic study on the chemical constituents and metabolic profiling of Tangzhiqing formula. The results indicated that alkaloids and flavonoids were main absorbed components, and glucuronidation and sulfation were the major metabolites. Moreover we concluded that alkaloids and flavonoids first underwent demethylation and hydrolysis reactions before biotransformed to phase II metabolites. This study provided valuable data for safety estimation of Tangzhiqing formula, which will be advantageous for clinical application.  相似文献   

3.
An ultra‐high‐performance liquid chromatography mass spectrometry method was established to detect and identify the chemical constituents of Zi Shen Formula (ZSF) and its metabolites in serum, urine and feces, after oral administration to rats. A total of 68 compounds were characterized in ZSF extracts. In vivo, 38 prototype components and 32 metabolites of ZSF were tentatively identified in rat serum, urine and feces. Seven metabolic pathways including demethylation, hydroxylation, oxidation, sulfation, glucuronidation, methylation and de‐caffeoyl were proposed to be involved in the generation of these metabolites. It was found that glucuronidation, methylation and demethylation were the major metabolic processes of alkaloids, while demethylation, methylation, sulfation and de‐caffeoyl were the major metabolic pathways of phenylethanoid glycosides. The main metabolic pathways of steroidal saponins were oxidation and isotype reactions. These findings are significant for our understanding of the metabolism of ZSF. The proposed metabolic pathways of bioactive components might be crucial for further studies of the mechanisms of action and pharmacokinetic evaluations of ZSF.  相似文献   

4.
Forsythoside A (FTA), the main active constituent isolated from Fructus Forsythiae, has various biological functions including anti‐oxidant, anti‐viral and anti‐microbial activities. However, while research on FTA has been mainly focused on the treatment of diseases on a material basis, FTA metabolites in vivo have not been comprehensively evaluated. Here, a rapid and sensitive method using a UHPLC‐LTQ‐Orbitrap mass spectrometer with multiple data processing techniques including high‐resolution extracted ion chromatograms, multiple mass defect filters and diagnostic product ions was developed for the screening and identification of FTA metabolites in rats. As the result, a total of 43 metabolites were identified in biological samples including 42 metabolites in urine, 22 metabolites in plasma and 15 metabolites in feces. These results demonstrated that FTA underwent a series of in vivo metabolic reactions including methylation, dimethylation, sulfation, glucuronidation, diglucuronidation, cysteine conjugation and their composite reactions. The research enhanced our understanding of FTA metabolism and built a foundation for further toxicity and safety studies.  相似文献   

5.
Menthae Haplocalycis Herba has been utilized for food and medicinal purposes in China for thousands of years. It has various efficacies, including dispelling wind and heat and relieving sore throat. M. Haplocalycis Herba has been also widely used in food, cosmetics, spices, and other fields. Exploring the constituents and detecting the metabolites of M. Haplocalycis are of great significance to clarify the effective substances. However, the in vivo metabolites of M. Haplocalycis Herba water extract are still unclear. Herein, a sensitive and specific method, ultra‐high performance liquid chromatography with linear ion trap‐Orbitrap mass spectrometry, established in this assay was used to study the metabolism of M. Haplocalycis Herba water extract in rat plasma, urine, and feces. We characterized and identified 9, 50, and 34 metabolites in plasma, urine, and feces, respectively. Seven metabolic pathways, including phase Ⅰ (isomerization, demethylation, hydroxylation, and dehydration) and phase Ⅱ (sulfation and glucuronidation) were mainly involved in the metabolism. It is the first systematic study on the metabolism of M. Haplocalycis Herba water extract in vivo, which enrich current understanding of the metabolic behavior of M. Haplocalycis Herba water extract and provide a metabolic rationale for further in‐depth in vivo biotransformation and pharmacokinetic analysis.  相似文献   

6.
Severe interference from the endogenous substances is often encountered in characterizing the drug metabolites by liquid chromatography/mass spectrometry using data-dependent acquisition (DDA). To add a precursor ions list (PIL) by DDA or apply data-independent acquisition (DIA) coupled with post-acquisition data processing (such as mass defect filtering, MDF) may assist to target more metabolites from the complex biosamples. Dehydrocorynine (DHC) is a bioactive alkaloid compound rich in Corydalis yanhusuo. We integrated both PIL-DDA and DIA-MDF strategies to probe the metabolites of DHC simultaneously from the rat plasma, bile, urine, and feces. Chromatographic separation was performed on an HSS C18 SB column. The positive-mode collision-induced dissociation-MS2 data of DHC metabolites were recorded by PIL-DDA on both the QTrap 4500 and Vion IM-QTOF mass spectrometers, and by HDMSE on Vion IM-QTOF. Efficient workflows to process the high-definition DDA (HDDDA) and HDMSE data were elaborated. Totally 40 metabolites (orally administrated at the dose of 100 mg/kg) were identified or tentatively characterized, involving 30 from bile, 16 from feces, 7 from plasma, and 18 from urine. The methoxyls and C-5/C-6/C-8 were the main sites prone to be metabolized via demethylation and oxidation, and further glucuronic acid conjugation and sulfuric acid conjugation. Compared with literature, we can newly discover 17 metabolites in bile, and, for the first time, report the metabolites of DHC from rat urine and feces. Conclusively, the presented PIL-DDA and DIA-MDF strategies are powerful in elucidating the drug metabolites, which thus provides reference to characterizing the metabolic profiles of traditional Chinese medicine components.  相似文献   

7.
“Dogel ebs” was known as Sophora flavescens Ait., a classical traditional Chinese Mongolian herbal medicine, which had the effects on damp‐heat dysentery, scrofula, and syndrome of accumulated dampness toxicity. Although the chemical constituents have been clarified by our previous studies, the metabolic transformation of “Dogel ebs” in vivo was still unclear. To explore the mechanism of “Dogel ebs,” the metabolites in plasma, bile, and urine samples were investigated. A fast positive and negative ion switching technology was used for the simultaneous determination of flavonoids and alkaloids in “Dogel ebs” in a single run. And a target‐group‐change coupled with mass defect filtering strategy was utilized to analyze the collected data. 89 parent compounds and 82 metabolites were characterized by high‐performance liquid chromatography with quadrupole exactive Orbitrap mass spectrometry. Both phase I and phase II metabolites were observed and the metabolic pathways involved in oxidation, demethylation, acetylation, and glucuronidation. 69 metabolites of “Dogel ebs,” including three hydroxyls bonding xanthohumol, formononetin‐7‐O‐glucuronide, 2′‐hydroxyl‐isoxanthohumol decarboxylation metabolite, oxysophocarpine dehydrogen, 9α‐hydroxysophoramine‐O‐glucuronide, etc. were reported for the first time.  相似文献   

8.
The goal of this study is to investigate the biotransformation of ginsenoside Rg1 in vivo. A highly sensitive and specific LC‐MS/MS method was developed and used for metabolite identification in rat feces and urine after oral administration of ginsenoside Rg1. Four metabolites of Rg1 were detected in rat feces and three metabolites of Rg1 were detected in rat urine. Deglycosylation and oxygenation were found to be the major metabolic pathways of ginsenoside Rg1 after oral administration in rat. Except for the reported metabolites Rh1 and protopanaxatriol, mono‐oxygenated Rg1 and mono‐oxygenated protopanaxatriol were detected for the first time after oral administration of Rg1. The in vivo metabolite profiling of ginsenoside Rg1 in rat was proposed. Viewed collectively, Rg1 was metabolized to mono‐oxygenated Rg1, Rh1, protopanaxatriol and the secondary metabolite mono‐oxygenated protopanaxatriol in rat. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Rosmarinic acid (RA) is a caffeic acid derivative and one of the most abundant and bioactive constituents in Java tea (Orthosiphon stamineus), which has significant biological activities. However, relatively few studies have been conducted to describe this compound's metabolites in vivo. Therefore, an ultra‐high‐performance liquid chromatography coupled to quadrupole‐time‐of‐flight tandem mass spectrometry (UHPLC–QTOF–MS/MS) analysis with a three‐step data mining strategy was established for the metabolic profile of RA. Firstly, the exogenously sourced ions were filtered out by the MarkerView software and incorporated with Microsoft Office Excel software. Secondly, a novel modified mass detects filter strategy based on the predicted metabolites was developed for screening the target ions with narrow, well‐defined mass detection ranges. Thirdly, the diagnostic product ions and neutral loss filtering strategy were applied for the rapid identification of the metabolites. Finally, a total of 16 metabolites were reasonably identified in urine, bile and feces, while metabolites were barely found in plasma. The metabolites of RA could also be distributed rapidly in liver and kidney. Glucuronidation, methylation and sulfation were the primary metabolic pathways of RA. The present findings might provide the theoretical basis for evaluating the biological activities of RA and its future application.  相似文献   

10.
(R)‐Salbutamol is a selective β2‐adrenoreceptor agonist, which produces a short‐acting bronchodilator effect and is widely used for the treatment of respiratory diseases in humans. Drug metabolism and identification of the metabolites play an essential role in the evaluation of the overall efficacy and safety of the drugs in clinical practices. There are few reports on the identification of major metabolites of (R)‐salbutamol in humans, and the number of identified metabolites is very limited. In this research, a method of ultra‐high performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry was developed for the discovery and identification of (R)‐salbutamol and its major metabolites in human biological samples. Totally, twelve metabolites of (R)‐salbutamol were found and identified and all the metabolites could be found in urine, one metabolite in plasma and two metabolites in feces. Among all the metabolites, eight metabolites have never been reported before. The results indicated that (R)‐salbutamol was mainly metabolized through isomerization, oxidation, reduction, glucuronidation, and sulfation pathways in vivo. The possible metabolic pathways of (R)‐salbutamol were subsequently presented in this study, which contribute to a better understanding of the metabolism of (R)‐salbutamol in humans.  相似文献   

11.
TM‐2 (13‐(N‐Boc‐3‐i‐butylisoserinoyl‐4,10‐β‐diacetoxy‐2‐α‐benzoyloxy‐5‐β‐20‐epoxy‐1,13‐α‐dihydroxy‐9‐oxo‐19‐norcyclopropa[g]tax‐11‐ene) is a novel semisynthetic taxane derivative. Our previous study suggested that TM‐2 is a promising antitumor analogue. In this paper, the metabolism of TM‐2 was investigated in rats following intravenous administration. Two different types of mass spectrometry—hybrid linear trap quadrupole orbitrap (LTQ‐Orbitrap) mass spectrometry and triple‐quadrupole tandem (QQQ) mass spectrometry—were employed to acquire structural information of TM‐2 metabolites. A total of 17 components were identified as the metabolites of TM‐2 in bile, feces, and urine samples. Accurate mass measurement using LC–LTQ‐Orbitrap‐MS was used to determine the accurate mass data and elemental composition of metabolites thereby confirming the proposed structures of the metabolites. The metabolites proposed were mainly oxidates of TM‐2, including methoxy, hydroxyl, dihydroxy, and trihydroxyl analogues. The major metabolic pathway of TM‐2 was the hydroxylation of the taxane ring or the lateral chain. These important metabolic data serve as a useful resource to support further research of TM‐2.  相似文献   

12.
Meisoindigo has been a routine therapeutic agent in the clinical treatment of chronic myelogenous leukemia in China since the 1980s. However, information relevant to in vivo metabolism of meisoindigo is absent so far. In this study, in vivo circulatory metabolites of meisoindigo in rat plasma, as well as excretory metabolites in rat urine and feces, were identified by liquid chromatography/tandem mass spectrometry (LC/MS/MS). Integration of multiple reaction monitoring with conventional metabolic profiling methodology was adopted to enable a more sensitive detection of in vivo metabolites. By comparing with the MS/MS spectra and retention times of the in vitro reduced metabolites, the major metabolites in rat plasma were proposed to form from 3,3′ double bond reduction, whereas the minor metabolites were formed from reduction followed by N‐demethylation, and reduction followed by phenyl mono‐oxidation. The major metabolites in the rat urine were proposed to form from reduction followed by phenyl mono‐oxidation, and its glucuronide conjugation and sulfate conjugation, whereas the minor metabolites were formed from 3,3′ double bond reduction, N‐demethylation, reduction followed by N‐demethylation, phenyl di‐oxidation, phenyl mono‐oxidation and its glucuronide conjugation and sulfate conjugation. The major metabolites in the rat feces were proposed to form from reduction followed by phenyl mono‐oxidation, whereas the minor metabolites were formed from reduction followed by N‐demethylation, and reduction followed by phenyl di‐oxidation. The phase I metabolic pathways showed a significant in vitro–in vivo correlation in rat. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Echinacoside (ECH) and acteoside (ACT), as the most and major active components of Cistanche tubulosa, were reported to possess cardioactive, neuroprotective and hepatocyte protective effects, as well as antibacterial, antioxidative effects. Recently, more studies have focused on their pharmacological activities. However, their metabolic profiles in vivo have not been sufficiently investigated. This study proposes an approach for rapidly identifying the complicated and unpredictable metabolites of ECH and ACT in rat plasma, bile, urine and feces, and systematically and comprehensively revealing their major metabolic pathways, based on powerful ultra‐high performance liquid chromatography coupled with quadrupole time‐of‐flight tandem mass spectrometry. Plasma, bile, urine and feces were collected from rats after a single 200 mg/kg oral dose. A total of 49 metabolites were detected in rat biological samples. Through analyzing metabolites in bile samples, it was found that ECH and ACT were subjected to a marked hepatic first‐pass effect in liver. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
l ‐Isocorypalmine, an active alkaloid compound isolated from Rhizoma Corydalis yanhusuo, has been reported to possess biological activity for treating cocaine use disorder. A high‐performance liquid chromatography coupled to Fourier transform ion cyclotron resonance mass spectrometry method was established for identification of the metabolites of l ‐isocorypalmine in urine, plasma and feces samples of rats after a single intragastric gavage of l ‐isocorypalmine at a dose of 15 mg/kg. As a result, a total of 21 metabolites (six phase ? metabolites and fifteen phase II metabolites) were detected and tentatively identified by mass spectrometry and fragment ions from tandem mass spectrometry spectra. All metabolites were present in the urine samples, nine metabolites were found in the plasma samples and three metabolites were found in the feces samples. Results indicated that metabolic pathways of l ‐isocorypalmine included oxidation, dehydrogenation, demethylation, sulfate conjugation, and glucuronide conjugation. In addition, glucuronidation was the major metabolic reaction. Results of this investigation could provide significant experimental basis for efficacy, safety and action mechanism of l ‐isocorypalmine, which will be advantageous to new drug development for treating cocaine addiction.  相似文献   

15.
研究四君子汤在2型糖尿病大鼠体内的药代动力学。 将四君子汤水提物以18 g/kg给正常大鼠和2型糖尿病大鼠灌胃,分别在不同时间点取尿液和粪便,检测其成分及代谢产物的含量;比较正常大鼠和2型糖尿病大鼠的药代动力学参数。 采用快速高分辨液相色谱-质谱联用技术对人参皂苷Rc、甘草甜素及其脱糖代谢物进行表征。 结果表明,四君子汤中人参皂苷Rc和甘草甜素在2型糖尿病大鼠体内的累计排泄率均高于正常大鼠,大部分人参皂苷通过尿液排出体外、粪便代谢为稀有人参皂苷;大部分甘草甜素在尿液和粪便中转化为甘草次酸,2型糖尿病大鼠与正常大鼠人参皂苷Rc和甘草甜素的药代动力学参数存在明显差异。 初步总结了四君子汤在体内的药代动力学机制和代谢途径。本分析方法具有高度自动化,灵敏性和准确性,这将有助于四君子汤的临床研究的不断发展。  相似文献   

16.
Ondansetron, a 5‐hydroxytryptamine type 3 (5‐HT3) receptor antagonist, is regarded as an excellent candidate to treat chemotherapy‐ and radiotherapy‐induced nausea and vomiting. To better understand the metabolic profiles of ondansetron in human urine, the metabolites were analyzed using liquid chromatography/mass spectrometry (LC/MSn). Urine samples were collected after oral administration of 8 mg ondansetron to healthy volunteers. Then samples were treated by solid‐phase extraction and detected with LC/MSn. Besides ondansetron, in human urine, a total of 19 metabolites including 13 new metabolites were detected and identified via comparing the retention time and product ion spectra with those of reference standards isolated and characterized. The results showed that ondansetron was metabolized via hydroxylation, glucuronidation, sulfation and minor N‐demethylation in human. LC/MSn was demonstrated to be useful and sensitive in the metabolic study of ondansetron.  相似文献   

17.
8‐Prenylkaempferol is a prenylflavonoid that has various bioactivities and benefits for human health. A high‐performance liquid chromatography with a diode array detector combined with electrospray ionization ion trap time‐of‐flight multistage mass spectrometry (HPLC‐DAD‐ESI‐IT‐TOF‐MSn) method was established to profile and identify the metabolites of 8‐prenylkaempferol in rat in vivo and in vitro, and to study the distribution of these metabolites in rats for the first time. A total of 38 metabolites were detected and tentatively identified, 30 of which were identified as new compounds. The new in vivo metabolic reactions in rats of prenylflavonoids of isomerization, polymerization, sulfation, amino acid conjugation, vitamin C conjugation and other known metabolic reactions were found in the metabolism of 8‐prenylkaempferol. The numbers of detected metabolites in feces, urine, plasma, small intestine, stomach, kidneys, liver, heart, lungs, spleen and hepatic S9 fraction were 31, 19, 1, 20, 13, 8, 7, 3, 3, 1 and 11, respectively. This indicated that small intestine and stomach were the major organs in which the 8‐prenylkaempferol metabolites were distributed. Furthermore, 16 metabolites were determined to have bioactivities based on the literature and ‘PharmMapper’ analysis. These findings are useful for better comprehension of the effective forms, target organs and pharmacological actions of 8‐prenylkaempferol. Moreover, they provide a reference for the study of the metabolism and distribution of prenylflavonoid aglycone compounds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Tanshinol borneol ester (DBZ) is a potential drug candidate composed of danshensu and borneol. It shows anti‐ischemic and anti‐atherosclerosis activity. However, little is known about its metabolism in vivo. This research aimed to elucidate the metabolic profile of DBZ through analyzing its metabolites using high‐performance liquid chromatography combined with electrospray ionization quadrupole time‐of‐flight mass spectrometry. Chromatographic separation was performed on an Agilent TC‐C18 column (150 × 4.6 mm, 5.0 μm) with gradient elution using methanol and water containing 0.2% (v/v) formic acid as the mobile phase. Metabolite identification involved analyzing the retention behaviors, changes in molecular weights and MS/MS fragment patterns of DBZ and its metabolites. As a result, 20 potential metabolites were detected and tentatively identified in rat plasma, urine and feces after administration of DBZ. DBZ could be metabolized to O‐methylated DBZ, DBZ‐O‐glucuronide, O‐methylated DBZ‐O‐glucuronide, hydroxylated DBZ and danshensu. Danshensu, a hydrolysis product of DBZ, could further be transformed into 12 metabolites. The proposed method was confirmed to be a reliable and sensitive alternative for characterizing metabolic pathways of DBZ and providing valuable information on its druggability.  相似文献   

19.
Quercetin, a kind of major flavonoid found in many traditional chinese medicines, is an effective substance for treatments such as lowering blood lipids. However, the studies on quercetin have been mainly focused on its pharmacological effect; the treatment of diseases on a material basis, particularly the metabolites derived from quercetin in vivo , has not been evaluated. In this study, we determined the levels, distributions and types of quercetin's metabolites in plasma, urine, feces and bile of rats after a single oral administration of quercetin at a dose of 80 mg/kg, using ultra‐performance liquid chromatography/quadrupole‐time‐of‐flight mass spectrometry (UPLC‐Q‐TOF/MS). A total of 36 metabolites of quercetin were identified, including 11 metabolites in plasma, 34 metabolites in urine, 12 metabolites in feces and 21 metabolites in bile. The results showed that phase I metabolites were reduction metabolites and phase II metabolites mainly included glucuronidation, sulfation and methylation metabolites. These results provide important information on the metabolism of quercetin, which will be helpful for its further development and utilization.  相似文献   

20.
Jiao‐Tai‐Wan, which is composed of Coptis Rhizoma and Cinnamon Cortex, has been recently used to treat type 2 diabetes. Owing to lack of data on its prototypes and metabolites, elucidation of the pharmacological and clinically safe levels of this formula has been significantly hindered. To screen more potential bioactive components of Jiao‐Tai‐Wan, we identified its multiple prototypes and metabolites in the plasma of type 2 diabetic rats by ultra high performance liquid chromatography/quadrupole‐time‐of‐flight mass spectrometry. A total of 47 compounds were identified in the plasma of type 2 diabetic rats, including 22 prototypes and 25 metabolites, with alkaloids constituting the majority of the absorbed prototype components. In addition, this is the first study to detect vanillic acid, gallic acid, chlorogenic acid, protocatechuic acid, 2‐hydroxycinnamic acid, 3‐hydroxycinnamic acid, 4‐hydroxycinnamic acid, and 2‐methoxy cinnamic acid after oral administration of Jiao‐Tai‐Wan. The prototypes from Jiao‐Tai‐Wan were extensively metabolized by demethylation, hydroxylation, and reduction in phase Ⅰ metabolic reactions and by methylation or conjugation of glucuronide or sulfate in phase Ⅱ reactions. This is the first systematic study on the components and metabolic profiles of Jiao‐Tai‐Wan in vivo. This study provides a useful chemical basis for further pharmacological research and clinical application of Jiao‐Tai‐Wan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号