首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystalline one‐dimensional compound, [RhII2(bza)4(pyz)]n ( 1 ) (bza=benzoate, pyz=pyrazine) demonstrates gas adsorbency for N2, NO, NO2, and SO2. These gas‐inclusion crystal structures were characterized by single‐crystal X‐ray crystallography as 1 ?1.5 N2 (298 K), 1 ?2.5 N2 (90 K), and 1 ?1.95 NO (90 K) under forcible adsorption conditions and 1 ?2 NO2 (90 K) and 1 ?3 SO2 (90 K) under ambient pressure. Crystal‐phase transition to the P space group that correlates with gas adsorption was observed under N2, NO, and SO2 conditions. The C2/c space group was observed under NO2 conditions without phase transition. All adsorbed gases were stabilized by the host lattice. In the N2, NO, and SO2 inclusion crystals at 90 K, short interatomic distances within van der Waals contacts were found among the neighboring guest molecules along the channel. The adsorbed NO molecules generated the trans‐NO???NO associated dimer with short intermolecular contacts but without the conventional chemical bond. The magnetic susceptibility of the NO inclusion crystal indicated antiferromagnetic interaction between the NO molecules and paramagnetism arising from the NO monomer. The NO2 inclusion crystal structure revealed that the gas molecules were adsorbed in the crystal in dimeric form, N2O4.  相似文献   

2.
Sodium/lithium transition metalates have found tremendous potential as cathode materials for Na/Li batteries. These metalates have acid-base and redox characteristics, which could be utilized for the chemisorption of gaseous pollutants. Their use was focused mainly on CO2 gas chemisorption at elevated temperatures. In recent years, these materials have found interesting applications in the chemisorption of CO, NO, SO2, and H2S gases. Some of these alkali ceramics have shown tremendous potential for the wet-oxidative removal of acidic gases, even in ambient conditions. The review presents an up-to-date account of alkali ceramics of 3d transition metals for the chemisorption of toxic gases, including CO2, CO, NO, SO2, and H2S. To the best of our knowledge, Na/Li 3d transition metalates have never been reviewed in the context of air decontamination, which needs to be presented to the readers for air purification applications.  相似文献   

3.
Cu doped MoSi2N4 monolayer (Cu-MoSi2N4) was firstly proposed to analyze adsorption performances of common gas molecules including O2, N2, CO, NO, NO2, CO2, SO2, H2O, NH3 and CH4 via density functional theory (DFT) combining with non-equilibrium Green's function (NEGF). The electronic transport calculations indicate that Cu-MoSi2N4 monolayer has high sensitivity for CO, NO, NO2 and NH3 molecules. However, only NH3 molecule adsorbs on the Cu-MoSi2N4 monolayer with moderate strength (−0.55 eV) and desorbs at room temperature (2.36×10−3 s). Thus, Cu-MoSi2N4 monolayer is demonstrated as a potential NH3 sensor.  相似文献   

4.
The ability of the polymer-based graphitic carbon nitride (g-C3N4) as a gas sensor toward NO, NO2, CO, CO2, SO2, SO3, and O2 gasses is assessed using density functional theory (DFT) calculations in terms of energetic and electronic transport characteristics. In particular, this study is aimed to explore the role of zigzag and armchair edges of the g-C3N4 sheet on sensing performances. The electronic properties of adsorption systems, such as Bader charge analysis, band gaps, work function, and density of states (DOS), are used to understand the interaction between the adsorbed gas molecules and the g-C3N4 sheet. Our calculated results indicate that SOx (SO3 and SO2) gasses have higher adsorption energies on the g-C3N4 sheet than other gasses. Furthermore, the transport properties, such as current–voltage (I-V) and resistance-voltage (R-V) curves along the zigzag and armchair directions are calculated using the non-equilibrium Green's function (NEGF) method to understand the performance of the g-C3N4 sheet as a prominent conductive/resistive sensor. The I-V/R-V results indicate that the zigzag g-C3N4 sheet has excellent sensing ability toward SOx gasses at low applied voltages. However, the presence of H2O degrades the sensing performance of the armchair g-C3N4 sheet. Theoretical recovery time has also been calculated to evaluate the reusability of g-C3N4 sheet-based gas sensors. Our results reveal that the zigzag g-C3N4 sheet-based sensing device has a remarkably high sensitivity (>300%) and selectivity toward SOx gasses and has the potential to work in a complex environment.  相似文献   

5.
Herein, we have used density functional theory (DFT) to investigate the adsorption behavior of gas molecules on Co/N3 co–doped graphene (Co/N3–gra). We have investigated the geometric stability, electric properties, and magnetic properties comprehensively upon the interaction between Co/N3–gra and gas molecules. The binding energy of Co is −5.13 eV, which is big enough for application in gas adsorption. For the adsorption of C2H4, CO, NO2, and SO2 on Co/N–gra, the molecules may act as donors or acceptors of electrons, which can lead to charge transfer (range from 0.38 to 0.7 e) and eventually change the conductivity of Co/N–gra. The CO adsorbed Co/N3–gra complex exhibits a semiconductor property and the NO2/SO2 adsorption can regulate the magnetic properties of Co/N3–gra. Moreover, the Co/N3–gra system can be applied as a gas sensor of CO and SO2 with high stability. Thus, we assume that our results can pave the way for the further study of gas sensor and spintronic devices.  相似文献   

6.
The viability of making [Fe(CB6)L] (L = H2, N2, O2, nitric oxide [NO?, NO, and NO+], CO2, and hydrocarbons [CH4, C2H6, C2H4, and C6H6]) has been investigated by density functional theory (DFT) calculations. The complexes 2 – 18 are thermodynamically stable and may be synthesized. The small molecules are activated to some extent after complexation. Molecular orbital and ΔG calculation revealed that the molecular hydrogen and hydrocarbons can be chemically adsorbed and desorbed on [Fe(CB6)] without any significant chemical modification and therefore [Fe(CB6)] may serve as a storage material. The N2, O2, and nitric oxide (NO?, NO, and NO+) can be activated using [Fe(CB6)]. Proton, carbon, boron, and nitrogen NMR chemical shift calculation predicts drastic chemical shift difference before and after the complexation of [Fe(CB6)] with small molecules. This new findings suggest that the CB62? ligand‐based complex may provide several applications in the future. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
The effects of non-thermal plasma on selective catalytic reduction of NOx by C3H8 (C3H8-SCR) over Co/BEA catalyst were investigated over a wide range of reaction temperatures (473–773 K). The significant synergistic effect between non-thermal plasma and catalytic reduction by C3H8 was exhibited at low temperatures from 473 to 673 K. The synergetic effect diminished with increasing temperature. The NOx removal efficiency of non-thermal plasma facilitated C3H8-SCR hybrid system increased significantly with the increase in NO2/NO ratio from 0.13 to 1.06 when the specific input energy increased from 0 to 136 J L?1. The oxidation performance of NO to NO2 was significantly enhanced by C3H8 in the plasma reactor. Results of CO2/CO ratio and CO2 selectivity suggested that adding non-thermal plasma improved CO2 selectivity of C3H8-SCR. 200 ppm SO2 slightly inhibited NOx conversion of the non-thermal plasma facilitated C3H8-SCR hybrid system at below 673 K, whereas it exhibited no obvious effect at over 673 K. Non-thermal plasma was more selective toward NO oxidation than SO2 oxidation in the presence of C3H8. The non-thermal plasma facilitated C3H8-SCR hybrid system could be used stably in durability tests with several hundreds ppm of SO2.  相似文献   

8.
This study aims to experimentally characterize the carbonaceous and nitrogenous species, from the flash pyrolysis of millet stalks and polyethylene plastic bags, using the device of the tubular kiln, coupled to two gas analyzers: Analyzer Fourier Transform Infrared (FTIR) and an analyzer Infrared Non-Dispersive (IRND). Gaseous products analyzed are: CH4, C2H2, C2H4, C3H8, C6H6, CO, CO2, NO2, NO, N2O, HCN and NH3. Whatever the temperature of thermal degradation, the pyrolysis shows us that in terms of mass:
  • •For the millet stalks, the gaseous compounds are formed mainly CO and CO2 to the carbonaceous species, HCN and NH3, for the nitrogenous species analyzed;
  • •As regards the polyethylene bags, hydrocarbons for carbonaceous species and HCN, NH3 and NO2 for the nitrogenous species, are most abundant.
In addition, the results suppose that in our experimental conditions, the hydrocarbon which is involved primarily in the formation of CO is ethylene C2H4. At the end of this characterization, we determined the rate of carbon and nitrogen found in the volatile gas. With millet stalks we have about 45% of volatile carbon and 15% of the nitrogen of fuel that are found in gaseous products. The results obtained with the plastic bags give 68% carbon and 15% nitrogen found in the nitrogenous species analyzed.  相似文献   

9.
Zusammenfassung Die vorliegende Arbeit beschreibt ein neues Verfahren zur gas-chromatographischen Simultananalyse von N2, O2, CO, CO2, N2O, SO2, CH4, C2H4 und C2H6 im Konzentrations-bereich von 10% bis 10 ppm ohne Voranreicherung. Die temperaturprogrammierte Trennung der Einzelkomponenten erfolgt nach Vorsäulensplitting auf zwei parallel geschalteten Säulen. Zur Emittlung der Retentionszeiten und der Peakflächen werden zwei voneinander unabhängige Ultraschalldetektoren verwendet, deren Analogsignale nach Digitalisierung in einem Mikrocomputer verarbeitet werden. Instrumentierung und chromatographische Einzelheiten werden beschrieben und diskutiert.
Simultaneous gas chromatographic determination of N2, O2, CO, CO2, N2O, SO2, CH4, C2H4 and C2H6 at the ppm-level. Part I
Summary A new procedure for the simultaneous determination of N2, O2, CO, CO2, N2O, SO2, CH4, C2H4 and C2H6 by gas chromatography is described. Concentrations from 10% down to 10 ppm can be determined without preconcentration. After a pre-column splitting the individual compounds of the sample are separated by a uniform temperature program on two different columns in parallel. Detection of the effluents is achieved by two individual ultrasonic detectors, the data from which are processed in a micro-computer. Instrumentation and gas chromatographic details are described and discussed.
  相似文献   

10.
By using first‐principles calculations based on density functional theory, we study the adsorption efficiency of a BC3 sheet for various gases, such as CO, CO2, NO, NO2, and NH3. The optimal adsorption position and orientation of these gas molecules on the BC3 surface is determined and the adsorption energies are calculated. Among the gas molecules, CO2 is predicted to be weakly adsorbed on the graphene‐like BC3 sheet, whereas the NH3 gas molecule shows a strong interaction with the BC3 sheet. The charge transfer between the molecules and the sheet is discussed in terms of Bader charge analysis and density of states. The calculated work function of BC3 in the presence of CO, CO2, and NO is greater than that of a bare BC3 sheet. The decrease in the work function of BC3 sheets in the presence of NO2 and NH3 further explains the affinity of the sheet towards the gas molecules. The energy gap of the BC3 sheets is sensitive to the adsorption of the gas molecules, which implies possible future applications in gas sensors.  相似文献   

11.
Pseudo-spectral dipole oscillator strengths and excitation energies, which are discrete representations of the original continuous dipole oscillator-strength distributions (DOSDs), are presented for the ground-state SO2, CS2 and OCS molecules. These pseudo-DOSDs, together with previously published pseudo-DOSDs, are used to evaluate the dipole—dipole and triple-dipole dispersion-energy coefficients for all the two- and three-body interactions between SO2, CS2 and OCS and between these molecules and H2, N2, O2, NO, N2O, H2O, NH3, CO, CO2, CH4, C2H6, C4H10 and C6H14, with an estimated uncertainty of 1–2%. The importance of results of this type is discussed briefly.  相似文献   

12.
By using an oxide sensing electrode, a stabilized zirconia-based sensor was developed for the selective detection of hydrocarbons at high temperature. Among the 14 kinds of oxides tested, CdO was found to be best suited for the sensing electrode of a tubular device, giving selective and quick response to propylene (C3H6) in air at 600°C. The emf value of the device was almost linear to the logarithm of C3H6 concentration in the range 50–800 ppm. The cross-sensitivities to other gases, such as CH4, C2H4, C2H6, C3H8, H2, CO, NO and NO2, were small or insignificant. Furthermore, a compact planar device, which required no reference gas, was also fabricated. The C3H6 sensitivity of the planar device was found to be hardly influenced by a change in oxygen concentration in the sample gas in the range 2–21 vol.%. A sensing mechanism involving mixed potential was confirmed based on the measurements of polarization curves.  相似文献   

13.
The effect of NO and SO2 on the oxidation of a CO? H2 mixture was studied in a jet‐stirred reactor at atmospheric pressure and for various equivalence ratios (0.1, 1, and 2) and initial concentrations of NO and SO2 (0–5000 ppm). The experiments were performed at fixed residence time and variable temperature ranging from 800 to 1400 K. Additional experiments were conducted in a laminar flow reactor on the effect of SO2 on CO? H2 oxidation in the same temperature range for stoichiometric and reducing conditions. It was demonstrated that in fuel‐lean conditions, the addition of NO increases the oxidation of the CO? H2 mixture below 1000 K and has no significant effect at higher temperatures, whereas the addition of SO2 has a small inhibiting effect. Under stoichiometric and fuel‐rich conditions, both NO and SO2 inhibit the oxidation of the CO? H2 mixture. The results show that a CO? H2 mixture has a limited NO reduction potential in the investigated temperature range and rule out a significant conversion of HNO to NH through reactions like HNO + CO ?? NH + CO2 or HNO + H2 ?? NH + H2O. The chain terminating effect of SO2 under stoichiometric and reducing conditions was found to be much more pronounced than previously reported under flow reactor conditions and the present results support a high rate constant for the H + SO2 + M ?? HOSO + M reaction. The reactor experiments were used to validate a comprehensive kinetic reaction mechanism also used to simulate the reduction of NO by natural gas blends and pure C1 to C4 hydrocarbons. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 564–575, 2003  相似文献   

14.
We explored the interactions of gas molecules such as H2, CH4, C2H4, C2H6, CO2, and CS2 sandwiched by two pyrazine (Pz) molecules, which were employed as a model of organic linker in the Hofmann-type metal?Corganic framework (MOF). The MP2.5/aug-cc-pVTZ method was employed here, because this method presents almost the same binding energy as that calculated by the CCSD(T)/aug-cc-pVDZ with MP2.5-evaluated basis set extension effects to aug-cc-pVTZ basis set. The binding energy of the gas molecule increases in the order H2?<?CH4?<?CO2?<?C2H4????C2H6?<?CS2. The energy decomposition analysis of the interaction energy indicates that the electrostatic term presents the largest contribution to the interaction energy at the Hartree?CFock level. However, the dispersion interaction provides dominant contribution to the total binding energy at correlated level. We newly found a linear correlation between the z-component of polarizability of gas molecules and dispersion energy, where the z-axis was taken to be perpendicular to two Pz rings. These results are useful for understanding and predicting the binding energy of the gas molecule with the organic linkers of MOF.  相似文献   

15.
The nitrosyl clusters PPN[YCCo3(CO)7(NO)] (Y = Me, Ph, COOH, (C5H5)Fe(C5H4)) have been prepared in high yield from the reaction of YCCo3(CO)9 with PPN(NO2) in THF, acetone or acetonitrile. Spectroscopic evidence indicates the structure of the nitrosyl anions is derived from that of YCCo3(CO)9 by the replacement of two CO ligands on one cobalt atom by a linear, terminal nitrosyl group. The nitrosyl metallates are extremely sensitive to oxidation and attempts to protonate the anions resulted in the reformation of the parent YCCo3(CO)9, molecules. The oxidative electrochemistry of the ferrocene complex, PPN[(C5H5)Fe(C5H4CCo3(CO)7(NO)] is also discussed.  相似文献   

16.
The most characteristic structures of hydrogen-bonded (H2SO4)2, H2SO4-dimethylformamide (DMF) and (H2SO4)2-DMF complexes are obtained by means of B3LYP/cc-pVQZ. The changes in the geometric parameters of the complexes are analyzed and the energy values of the intermolecular interaction are estimated. The electronic mechanism for the formation of hydrogen bonds between molecules is considered. It is shown that complexes of (H2SO4)2-DMF composition are more energy-stable than complex with one H2SO4 molecule. It is established that molecular complexes with very strong hydrogen bonds and complexes with proton transfer can be formed between an acid dimer and N,N-dimethylformamide. It is concluded that protons can be transferred in the gas phase in (H2SO)2-DMF, where the molecules in (H2SO4)2 are bound by three hydrogen bonds.  相似文献   

17.
The combined thermal analysis techniques of thermogravimetry, evolved gas analysis and mass spectrometry were used to investigate the thermal decomposition of several selected mercury(I), (II) compounds. Although TG curves are presented, the analysis of the evolved gases formed during the thermal decomposition processes was of greater interest. Gaseous products detected included: HgSO4SO, SO2 and O2; Hg(SCN)2CS2, (CN)2 and N2; Hg(NO3)2NO, N2O, NO2 and O2; HgNO3 H2ONO, NO2 and N2O; and Hg(C2H3O2)2—organic fragments. The evolved gas analysis was complicated by sublimation of the compounds at low pressures.  相似文献   

18.
In this research, the reforming of simulated natural gas containing a high CO2 content under AC non-thermal gliding arc discharge with partial oxidation was conducted at ambient temperature and atmospheric pressure, with specific regards to the concept of the direct utilization of natural gas. This work aimed at investigating the effects of applied voltage and input frequency, as well as the effect of adding oxygen on the reaction performance and discharge stability in the reforming of the simulated natural gas having a CH4:C2H6:C3H8:CO2 molar ratio of 70:5:5:20. The results showed marked increases in both CH4 conversion and product yield with increasing applied voltage and decreasing input frequency. The selectivities for H2, C2H6, C2H4, C4H10, and CO were observed to be enhanced at a higher applied voltage and at a lower frequency, whereas the selectivity for C2H2 showed an opposite trend. The use of oxygen was found to provide a great enhancement of the plasma reforming of the simulated natural gas. For the combined plasma and partial oxidation in the reforming of CO2-containing natural gas, air was found to be superior to pure oxygen in terms of reactant conversions, product selectivities, and specific energy consumption. The optimum conditions were found to be a hydrocarbons-to-oxygen feed molar ratio of 2/1 using air as an oxygen source, an applied voltage of 17.5 kV, and a frequency of 300 Hz, in providing the highest CH4 conversion and synthesis gas selectivity, as well as extremely low specific energy consumption. The energy consumption was as low as 2.73 × 10−18 W s (17.02 eV) per molecule of converted reactant and 2.49 × 10−18 W s (16.60 eV) per molecule of produced hydrogen.  相似文献   

19.
Gas phase nitration of benzene on ZSM-5 zeolite has been studied at 140–170°C. Increase in the HNO3/C6H6 ratio of the starting mixture was shown to increase the nitrobenzene yield. Process parameters worsened with time since reagents and products were strongly adsorbed and left the zeolite surface only at 220–250°C as CO, CO2 and NO.  相似文献   

20.
A highly specific technique for real time monitoring of simple and complex molecules is described. This technique depends on using the Zeeman effect to tune an atomic emission line to coincide with a sharp molecular absorption feature and has been named TALMS (Tunable Atomic Line Molecular Spectroscopy). Results are presented on the determination of di-atomic (NO), tri-atomic (NO2, SO2), tetra-atomic (H2CO) and more complex molecules. An explanation is offered for the ability of this technique to determine complex molecules, which suggests that the method should be highly specific. It is concluded that work in this area will lead to instrumentation that will be valuable for process control or environmental monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号