首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(N‐alkyl‐3,6‐dihydroxy‐2,7‐carbazole) which should be soluble and have phenolic function was synthesized through different two routes. The former method was a direct synthesis by polymerizing a 2,7‐dibromo‐3,6‐dihydroxycarbazole monomer using Ni(cod)2, which only gave a low molecular weight polymer. The latter method was an ether cleavage reaction of methoxy groups in a precursor polymer, poly(3,6‐dimethoxycarbazole), using BBr3, which gave successfully the objective polymer that has a number average molecular weight of 4300 g/mol comparable to the precursor polymer. They showed large spectral changes in photoabsorption and fluorescence on addition of base. They also showed redox behavior similar to a hydroquinone/benzoquinone couple investigated by cyclic voltammetry. These new functions could be derived from the phenolic hydroxy group in the carbazole unit. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2039–2044  相似文献   

2.
Acrylamide was graft polymerized onto the surface of a chemically crosslinked and amorphous biodegradable polyester, poly(1,5‐dioxepan‐2‐one). Electron beam irradiation at a dose of 5 Mrad was used to generate the initiating species in the polyester. The degradation behavior in vitro at pH 7.4 and 37°C in a phosphate buffer solution was studied for untreated, irradiated, and acrylamide‐grafted polymer. Differences in weight loss performance were observed between virgin and treated polymers. The acrylamide‐grafted poly(1,5‐dioxepan‐2‐one) was totally degraded after 43 weeks as compared to 48 weeks for the irradiated and 55 weeks for the virgin polymer. On the other hand, the treated polymers showed a higher resistance to degradation in terms of weight loss during the intermediate part of the degradation, i.e., between about 5 and 35 weeks. After this period, the irradiated and particularly the acrylamide grafted poly(1,5‐dioxepan‐2‐one) degraded much more rapidly than the virgin polymer. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1659–1663, 1999  相似文献   

3.
A significant improvement in the electroluminescence (EL) properties was observed for a poly{5‐methoxy‐2‐[(2′‐ethyl‐hexyl)‐oxy]‐p‐phenylenevinylene} (MEH–PPV)/poly(2,3‐diphenyl‐5‐octyl‐p‐phenylenevinylene) (DPO–PPV) blend after a thermal treatment at 200 °C for 2 h in vacuo to furnish the chemical bonding between polymer chains. 1H NMR spectroscopy and two‐photon excitation microscopy revealed that the chemical bonding turned the immiscible polyblend into a system more like a block copolymer with a vertically segregated morphology. Because both the lowest unoccupied molecular orbital and highest occupied molecular orbital levels of MEH–PPV in the wetting layer were higher than those of DPO–PPV in the upper layer, the heterojunction between the two layers of the polymers fit the category of so‐called type II heterojunctions. As a result, the turn‐on voltage of the polymer light‐emitting diode prepared with the thermally treated polyblend decreased to ~0.6 V, and the EL emission intensities and quantum efficiencies increased to about 4 times those of the untreated polyblend. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 62–69, 2006  相似文献   

4.
A series of amphiphilic graft copolymers P(HFMA)‐g‐P(SPEG) comprising poly(hexafluorobutyl methacrylate) (PHFMA) backbones and poly(ethylene glycol) (PEG) side chains were synthesized by copolymerization of HFMA and SPEG macromonomer with the p‐vinylbenzyl end group. The SPEG macromonomer was synthesized by reacting Methoxy poly(ethylene glycol) (MPEG) with p‐chloromethylstyrene in THF in the presence of NaH. The macromonomer and amphiphilic graft copolymer were characterized by FTIR, 1H NMR, 19F NMR, and gel permeation chromatography (GPC). The critical micelle concentration (CMC) of the amphiphilic graft copolymer was measured by surface tension technique. The results showed that the CMC decreased with increasing HFMA contents in the graft copolymers. The interaction between P(HFMA)‐g‐P(SPEG) and bovine serum albumin (BSA) was studied by fluorescence spectroscopy, transmission electron microscopy (TEM), and photon correlation spectroscopy (PCS). The fluorescence spectrum showed that the fluorescence intensity of BSA increased with increasing content of HFMA in P(HFMA)‐g‐P(SPEG) and concentration of P(HFMA)‐g‐P(SPEG) in the P(HFMA)‐g‐P(SPEG)/BSA solution. TEM micrographs showed that P(HFMA)‐g‐P(SPEG) mainly formed core‐shell structure micelles. When BSA was added, the micelles changed from a core‐shell structure into a worm‐like, vesicle‐like and hollow‐like structure with different initial concentrations of the copolymer. The size distribution of the micelles increased proving that the copolymer micelles encapsulated the bovine serum albumin. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4895–4907, 2009  相似文献   

5.
Poly(para‐phenylene vinylene) (PPV) is a key material for optoelectronics because it combines the potential of both polymers and semiconductors. PPV has been synthesized via solution‐processable precursor route, in which the precursor polymer poly(xylene tetrahydrothiophenium chloride) (PTHT) is thermally converted to PPV throughout the sample as a whole. Much effort has been devoted to fulfill spatial selectivity of PPV conversion. However, none of the methods proposed stand for PPV conversion three dimensionally, which would be appealing for the design of microdevices. Here, we demonstrate the potential of fs‐laser direct writing via two‐photon polymerization (2PP) to fabricate PPV‐doped 3D microstructures. PTHT is incorporated into the polymeric material and it is subsequently converted to PPV through a thermal treatment. Optical measurements, taken prior and after thermal conversion, confirm the PTHT to PPV conversion. Fs‐laser direct writing via 2PP can be exploited to fabricate a variety of 3D microdevices, thus opening new avenues in polymer‐based optoelectronics. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 479–483  相似文献   

6.
Two alkylthio‐substituted poly(p‐phenylenevinylene) (AT–PPV) derivatives, poly(2‐octylthio‐p‐phenylenevinylene) (OT–PPV) and poly[5‐methoxy‐2‐(2′‐ethyl‐hexylthio)‐p‐phenylenevinylene] (MEHT–PPV), were synthesized by a Heck coupling reaction for the investigation of the effect of alkylthio groups on the optoelectronic properties of poly(p‐phenylenevinylene) derivatives. The absorption peaks of OT–PPV and MEHT–PPV solutions were located at 431 and 438 nm, respectively. As for solid films, an OT–PPV film showed an absorption maximum wavelength at 444 nm, 13 nm redshifted in comparison with its solution value, whereas an MEHT–PPV film displayed the same absorption peak position as its dilute solution; this indicated that there was no interchain interaction in the MEHT–PPV film. Polymeric light‐emitting diodes (PLEDs) and polymer solar cells (PSCs) based on OT–PPV and MEHT–PPV were fabricated and characterized. Very narrow bandwidths of the electroluminescence (EL) spectra of the two AT–PPVs were found, with the full width at half‐maximum of the emission being 40 and 47 nm for OT–PPV and MEHT–PPV, respectively. The maximum EL efficiency of the single‐layer PLED based on MEHT–PPV with Al as a cathode reached 1.49 cd/A. The PSC based on a blend of OT–PPV and [6,6]‐phenyl‐C61 butyric acid methyl ester (PCBM) showed the power conversion efficiency of 1.4% under the illumination of AM1.5 (80 mW/cm2). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1279–1290, 2006  相似文献   

7.
The synthesis, micelle formation, and bulk properties of semifluorinated amphiphilic poly(ethylene glycol)‐b‐poly(pentafluorostyrene)‐g‐cubic polyhedral oligomeric silsesquioxane (PEG‐b‐PPFS‐g‐POSS) hybrid copolymers is reported. The synthesis of amphiphilic PEG‐b‐PPFS block copolymers are achieved using atom transfer radical polymerization (ATRP) at 100 °C in trifluorotoluene using modified poly(ethylene glycol) as a macroinitiator. Subsequently, a proportion of the reactive para‐F functionality on the pentafluorostyrene units was replaced with aminopropylisobutyl POSS through aromatic nucleophilic substitution reactions. The products were fully characterized by 1H‐NMR and GPC. The products, PEG‐b‐PPFS and PEG‐b‐PPFS‐g‐POSS, were subsequently self‐assembled in aqueous solutions to form micellar structures. The critical micelle concentrations (cmc) were estimated using two different techniques: fluorescence spectroscopy and dynamic light scattering (DLS). The cmc was found to decrease concomitantly with the number of POSS particles grafted per copolymer chain. The hydrodynamic particle sizes (Rh) of the micelles, calculated from DLS data, increase as the number of POSS molecules grafted per copolymer chain increases. For example, Rh increased from ~60 nm for PEG‐b‐PPFS to ~80 nm for PEG‐b‐PPFS‐g‐POSS25 (25 is the average number of POSS particles grafted copolymer chain). Static light scattering (SLS) data confirm that the formation of larger micelles by higher POSS containing copolymers results from higher aggregation numbers (Nagg), caused by increased hydrophobicity. The Rg/Rh values, where Rg is the radius of gyration calculated from SLS data, are consistent with a spherical particle model having a core‐shell structure. Thermal characterization by differential scanning calorimetry (DSC) reveals that the grafted POSS acts as a plasticizer; the glass transition temperature (Tg) of the PPFS block in the copolymer decreases significantly with increasing POSS content. Finally, the rhombohedral crystal structure of POSS in PEG‐b‐PPFS‐g‐POSS was verified by wide angle X‐ray diffraction measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 152–163, 2010  相似文献   

8.
Amphiphilic block‐graft copolymers mPEG‐b‐P(DTC‐ADTC‐g‐Pal) were synthesized by ring‐opening polymerization of 2,2‐dimethyltrimethylene carbonate (DTC) and 2,2‐bis(azidomethyl)trimethylene carbonate (ADTC) with poly(ethylene glycol) monomethyl ether (mPEG) as an initiator, followed by the click reaction of propargyl palmitate and the pendant azido groups on the polymer chains. Stable micelle solutions of the amphiphilic block‐graft copolymers could be prepared by adding water to a THF solution of the polymer followed by the removal of the organic solvent by dialysis. Dynamic light scattering measurements showed that the micelles had a narrow size distribution. Transmission electron microscopy images displayed that the micelles were in spherical shape. The grafted structure could enhance the interaction of polymer chains with drug molecules and improve the drug‐loading capacity and entrapment efficiency. Further, the amphiphilic block‐graft copolymers mPEG‐b‐P(DTC‐ADTC‐g‐Pal) were low cytotoxic and had more sustained drug release behavior. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
A poly(p‐phenylenevinylene) (PPV) derivative containing a bulky (2,2‐diphenylvinyl)phenyl group in the side chain, EHDVP‐PPV, was synthesized by Gilch route. The reduced tolane‐bisbenzyl (TBB) defects, as well as the structure of the polymer, was confirmed by various spectroscopic methods. The intramolecular energy transfer from the (2,2‐diphenylvinyl)phenyl side group to the PPV backbone was studied by UV‐vis and photoluminescence (PL) of the obtained polymer and model compound. The polymer film showed maximum absorption and emission peaks at 454 and 546 nm, respectively, and high PL efficiency of 57%. A yellow electroluminescence (λmax = 548 nm) was obtained with intensities of 6479 cd/m2 when the light‐emitting diodes of ITO/PEDOT/EHDVP‐PPV/LiF/Al were fabricated. The maximum power efficiency of the devices was 0.729 lm/W with a turn‐on voltage of 3.6 V. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5636–5646, 2004  相似文献   

10.
We describe the synthesis and characterization of a series of poly(vinyl acetate‐co‐dibutyl maleate) [P(VAc‐DBM)] latex particles (monomer molar ratio 10.6:1). One set of samples [high‐M and M250k SDS‐P(VAc‐DBM), gel content 50% and 0%] was prepared in the presence of an anionic surfactant sodium dodecyl sulfate. The other two sets of samples [high‐M and M250k PVOH–P(VAc‐DBM)] were prepared in the presence of poly(vinyl alcohol) (PVOH). These polymers differ in gel content (50 and 0%) and the extent of PVOH grafting (30 and 15%). Polymer diffusion across cell boundaries in the latex films was monitored by fluorescence resonant energy transfer (ET) experiments. First, we examined M250k samples in the presence of grafted and post‐added PVOH. The presence of post‐added PVOH (5%) causes a small but detectable retardation on the rate of polymer diffusion, whereas the presence of grafted PVOH (degree of grafting: 15%) significantly promotes the polymer diffusion rate. For the high‐M P(VAc‐DBM), the presence of post‐added PVOH also retards the polymer diffusion. Strikingly, the presence of grafted PVOH (degree of grafting: 30%) in the high‐M PVOH‐P(VAc‐DBM) promotes the polymer diffusion to such an extent that the diffusion was complete in the freshly prepared films. Our data also suggest that under our experimental conditions, the rate of P(VAc‐DBM) diffusion increases with an increase of the degree of PVOH grafting. To confirm these results, we carried out fluorescence microscopy experiments to monitor the fate of PVOH in these latex films and found that in newly formed PVOH–P(VAc‐DBM) films, the PVOH was either uniformly distributed in the P(VAc‐DBM) matrix or the domains were too small to be resolved (i.e., < 0.5 μm). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5005–5020, 2004  相似文献   

11.
A soluble all‐aromatic poly(2,5‐diphenyl‐1,4‐phenylenevinylene) (2,5‐DP‐PPV) is synthesized by utilizing aromatic phosphonium and aldehyde monomers through Wittig reaction. The H1 NMR and FTIR measurements indicate that over 50% content of cis‐vinylene units exist in polymer backbone. The diphenyl‐substituted benzaldehyde monomer plays an important role to enhance cis‐products (Z‐selectivity) in Wittig reactions. The twisted cis‐segments in polymer backbone reduce the interchain interactions and enhance the solubility of such all‐aromatic PPV derivative in common organic solvents. 2,5‐DP‐PPV exhibits good solubility in common organic solvents, such as tetrahydrofuran and chloroform. The polymer film exhibits a blue light emission (λmax = 485 nm) and a very high photoluminescence efficiency of 78%. The cis‐trans photo isomerization of this polymer in solution and the impact on the optical properties are also investigated. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5242–5250, 2008  相似文献   

12.
An N‐phenylcarbazole‐containing poly(p‐phenylenevinylene) (PPV), poly[(2‐(4′‐carbazol‐9‐yl‐phenyl)‐5‐octyloxy‐1,4‐phenylenevinylene)‐alt‐(2‐(2′‐ethylhexyloxy)‐5‐methoxy‐1,4‐phenylenevinylene)] (Cz‐PPV), was synthesized, and its optical, electrochemical, and electroluminescent properties were studied. The molecular structures of the key intermediates, the carbazole‐containing boronic ester and the dialdehyde monomer, were crystallographically characterized. The polymer was soluble in common organic solvents and exhibited good thermal stability with a 5% weight loss at temperatures above 420 °C in nitrogen. A cyclic voltammogram showed the oxidation peak potentials of both the pendant carbazole group and the PPV main chain, indicating that the hole‐injection ability of the polymer would be improved by the introduction of the carbazole‐functional group. A single‐layer light‐emitting diode (LED) with a simple configuration of indium tin oxide (ITO)/Cz‐PPV (80 nm)/Ca/Al exhibited a bright yellow emission with a brightness of 1560 cd/m2 at a bias of 11 V and a current density of 565 mA/cm2. A double‐layer LED device with the configuration of ITO/poly(3,4‐ethylenedioxy‐2,5‐thiophene):poly (styrenesulfonic acid) (60 nm)/Cz‐PPV (80 nm)/Ca/Al gave a low turn‐on voltage at 3 V and a maximum brightness of 6600 cd/m2 at a bias of 8 V. The maximum electroluminescent efficiency corresponding to the double‐layer device was 1.15 cd/A, 0.42 lm/W, and 0.5%. The desired electroluminescence results demonstrated that the incorporation of hole‐transporting functional groups into the PPVs was effective for enhancing the electroluminescent performance. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5765–5773, 2005  相似文献   

13.
Two novel copoly(p‐phenylene)s ( P1 – P2 ) containing bipolar groups (12.8 and 6.8 mol %, respectively), directly linked hole transporting triphenylamine and electron transporting aromatic 1,2,4‐triazole, were synthesized to enhance electroluminescence (EL) of poly(p‐phenylene vinylene) (PPV) derivatives. The bipolar groups not only enhance thermal stability but also promote electron affinity and hole affinity of the resulting copoly(p‐phenylene)s. Blending the bipolar copoly‐(p‐phenylene)s ( P1 – P2 ) with PPV derivatives ( d6‐PPV ) as an emitting layer effectively improve the emission efficiency of its electroluminescent devices [indium tin oxide (ITO)/poly(3,4‐ethylenedioxythiophene) (PEDOT):poly(styrenesulfonate) (PSS)/polymer blend/Ca (50 nm)/Al (100 nm)]. The maximum luminance and maximum luminance efficiency were significantly enhanced from 310 cd m?2 and 0.03 cd A?1 ( d6‐PPV ‐based device) to 1450 cd m?2 and 0.20 cd A?1 (blend device with d6‐PPV / P1 = 96/4 containing ~0.5 wt % of bipolar groups), respectively. Our results demonstrate the efficacy of the copoly(p‐phenylene)s with bipolar groups in enhancing EL of PPV derivatives. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

14.
A new type of conjugated polymer, organoselenium substituted poly(p‐phenyleneviny‐ lene) (PPV), was synthesized from the corresponding alkylselenenyl p‐xylylene dibromide via a Gilch route using potassium tert‐butoxide in THF. The p‐xylylene dibromide precursors were synthesized by reacting lithiated bis(methoxymethyl)benzenes with elemental selenium, followed by alkylation of the generated selenolates. As a final demasking step, the bromomethyl functions were liberated by ether cleavage using boron tribromide. Bis‐alkylselenenyl PPV was obtained with an average molecular weight Mw of approximately 300,000 g/mol and with polydispersity Mw/Mn = 2. Due to low solubility, monoalkylselenenyl PPV was obtained with a considerably lower average molecular weight in the proximity of 16,000 g/mol and with a polydispersity slightly larger than 3. Absorption and fluorescence spectroscopy revealed that the bis‐alkylselenenyl PPV is extensively conjugated. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:656–662, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20167  相似文献   

15.
Poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐p‐phenylenevinylene] (MEH‐PPV) with a molar mass of 26–47 × 104 g mol?1 and a polydispersity of 2.5–3.2 was synthesized by a liquid–solid two‐phase reaction. The liquid phase was tetrahydrofuran (THF) containing 1,4‐bis(chloromethyl)‐2‐methoxy‐5‐(2′‐ethylhexyloxy)benzene as the monomer and a certain amount of tetrabutylammonium bromide as a phase‐transfer catalyst. The solid phase consisted of potassium hydroxide particles with diameters smaller than 0.5 mm. The reaction was carried out at a low temperature of 0 °C and under nitrogen protection. No gelation was observed during the polymerization process, and the polymer was soluble in the usual organic solvents, such as chloroform, toluene, THF, and xylene. A polymer light‐emitting diode was fabricated with MEH‐PPV as an active luminescent layer. The device had an indium tin oxide/poly(3,4‐ethylenedioxylthiophene) (PEDOT)/MEH‐PPV/Ba/Al configuration. It showed a turn‐on voltage of 3.3 V, a luminescence intensity at 6.1 V of 550 cd/m2, a luminescence efficiency of 0.43 cd/A, and a quantum efficiency of 0.57%. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3049–3054, 2004  相似文献   

16.
A new series of symmetrically substituted bulky PPV‐copolymers based on poly(bis‐2,5‐(2‐ethylhexyloxy)‐1,4‐phenylenevinylene) ( BEH‐PPV ) bearing tricyclodecane (TCD) pendants were synthesized to study the effect of chain aggregation in the π‐conjugated polymer backbone. The composition of the copolymers was varied up to 100 mol % and the structures of the copolymer were confirmed by NMR and FTIR. The molecular weights of the copolymers were obtained as Mw = 11,500–1,78,800 depending on the TCD‐incorporation in BEH‐PPV. The origin of the π‐aggregation was investigated using mixture of solvents (polar or nonpolar) or temperature as external stimuli. Absorption, photoluminescence, and time‐resolved fluorescence decay techniques were employed as tools to trace molecular aggregation in solution and solid state. The TCD‐substituted bulky copolymers showed almost twice the enhancement in photoluminescence compared with that of BEH‐PPV . Solvent‐induced aggregation studies of copolymers revealed the existence of strong molecular aggregation in BEH‐PPV compared with that of bulky copolymers. Variable temperature studies further evidence for the reversibility of molecular aggregation on heating/cooling cycles and showed isosbetic points with respect to free and aggregated polymer chains. Time‐resolved fluorescent studies confirmed the existence of free and aggregated π‐conjugated species with a life time of 0.1 to 1.0 ns. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2631–2646, 2009  相似文献   

17.
A new turn on fluorescent probe for ferric ion based on poly(m‐phenyleneethynylene salicylaldimine) ( PPE‐IM ) has been developed. The preparation of PPE‐IM involves post‐polymerization functionalization of the corresponding polymeric amine, PPE‐AM , via the condensation with salicylaldehyde. The degree of polymerization of both PPE‐IM and PPE‐IM is 17 with polydispersity index of 1.5. In aqueous solution, the polymeric PPE‐IM is highly stable unlike its small molecule analog which is gradually hydrolyzed. The weak fluorescence of initial PPE ‐ IM (λem = 470) is greatly enhanced by 300 folds upon the addition of Fe3+. The 1H NMR reveals that the fluorescence enhancement is caused by Fe3+‐induced hydrolysis of the imine group. The sensing system shows a detection limit of 0.14 μM of Fe3+. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1155–1161  相似文献   

18.
Water‐soluble and photoluminescent block copolymers [poly(ethylene oxide)‐block‐poly(p‐phenylene vinylene) (PEO‐b‐PPV)] were synthesized, in two steps, by the addition of α‐halo‐α′‐alkylsulfinyl‐p‐xylene from activated poly(ethylene oxide) (PEO) chains in tetrahydrofuran at 25 °C. This copolymerization, which was derived from the Vanderzande poly(p‐phenylene vinylene) (PPV) synthesis, led to partly converted PEO‐b‐PPV block copolymers mixed with unreacted PEO chains. The yield, length, and composition of these added sequences depended on the experimental conditions, namely, the order of reagent addition, the nature of the monomers, and the addition of an extra base. The addition of lithium tert‐butoxide increased the length of the PPV precursor sequence and reduced spontaneous conversion. The conversion into PPV could be achieved in a second step by a thermal treatment. A spectral analysis of the reactive medium and the composition of the resulting polymers revealed new evidence for an anionic mechanism of the copolymerization process under our experimental conditions. Moreover, the photoluminescence yields were strongly dependant on the conjugation length and on the solvent, with a maximum (70%) in tetrahydrofuran and a minimum (<1%) in water. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4337–4350, 2005  相似文献   

19.
Chiral poly(p‐phenylenevinylene‐altm‐phenylenevinylene)s bearing (?)‐trans‐myrtanoxyl groups on the p‐phenylene rings were synthesized by Wittig's reaction and Heck's reaction, respectively, namely Myr‐PMPV‐w and Myr‐PMPV‐h correspondingly. The chiroptical properties of the polymers were investigated in chlorobenzene solution by circular dichroism. The results showed that both Myr‐PMPV‐w and Myr‐PMPV‐h showed no Cotton effect due to their irregular molecular structure. By the treatment with I2, most of the cis‐vinylene linkages in Myr‐PMPV‐w were converted to trans‐vinylenes, consequently, the structure of Myr‐PMPV‐w became much more regular, and the resulting polymer ( iso‐Myr‐PMPV‐w ) showed strong bisignate Cotton effects in the π–π* transition. Compared to its analogous poly(p‐phenylenevinylene) (PPV) ( iso‐Myr‐PPV‐w ), iso‐Myr‐PMPV‐w showed much stronger Cotton effect, its maximum g value was about one order of magnitude higher than that of iso‐Myr‐PPV‐w under the same conditions. With increasing concentration and decreasing temperature, the gmax value of iso‐Myr‐PMPV‐w increased, and the maximum absorption was slightly blue‐shifted, but the shape and range of absorption curves did not changed significantly, and no clear isosbestic point could be observed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3336–3343, 2008  相似文献   

20.
A series of well‐defined double hydrophilic double‐grafted copolymers, consisting of polyacrylate backbone, hydrophilic poly(2‐(diethylamino)ethyl methacrylate) and poly(ethylene glycol) side chains, were synthesized by successive atom transfer radical polymerization. The backbone, poly[poly(ethylene glycol) methyl ether acrylate] (PPEGMEA) comb copolymer, was firstly prepared by ATRP of PEGMEA macromonomer via the grafting‐through route followed by reacting with lithium diisopropylamide and 2‐bromopropionyl chloride to give PPEGMEA‐Br macroinitiator of ATRP. Finally, poly[poly(ethylene glycol) methyl ether acrylate]‐g‐poly(2‐(diethylamino)ethyl methacrylate) graft copolymers were synthesized by ATRP of 2‐(diethylamino)ethyl methacrylate using PPEGMEA‐Br macroinitiator via the grafting‐from route. Poly(2‐(diethylamino)ethyl methacrylate) side chains were connected to polyacrylate backbone through stable C? C bonds instead of ester connections, which is tolerant of both acidic and basic environment. The molecular weights of both backbone and side chains were controllable and the molecular weight distributions kept relatively narrow (Mw/Mn ≤ 1.39). The results of fluorescence spectroscopy, dynamic laser light scattering and transmission electron microscopy showed this double hydrophilic copolymer was stimuli‐responsive to both pH and salinity. It can aggregate to form reversible micelles in basic surroundings which can be conveniently dissociated with the addition of salt at room temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3142–3153, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号