首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxidation kinetics of 2‐butanol by alkaline hexacyanoferrate(III) catalyzed by sodium ruthenate has been studied spectrophotometrically. The initial rates method was used for kinetic analysis. The reaction rate shows a fractional‐order in [hexacyanoferrate(III)] and [substrate] and a first‐order dependence on [Ru(VI)]. The dependence on [OH] is rather more complicated. The kinetic data suggest a reaction mechanism involving two active catalytic species. Each one of these species forms an intermediate complex with the substrate. The attack of these complexes by hexacyanoferrate(III), in a slow step, produces ruthenium(V) complexes which are oxidized in subsequent steps to regenerate the catalyst species. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 1–9, 1999  相似文献   

2.

Abstract  

The kinetics of the oxidation of ruthenium(III)-catalyzed oxidation of pentoxifylline (PTX) by diperiodatocuprate(III) (DPC) in aqueous alkaline medium at a constant ionic strength of 0.30 mol dm−3 was studied spectrophotometrically. The reaction between PTX and DPC in alkaline medium in the presence of Ru(III) exhibits 1:2 stoichiometry (PTX:DPC). The reaction was of first order in DPC, less than the unit order in [PTX] and [OH] and negative fractional order in [IO4 ]. The order in [Ru(III)] was unity. Intervention of free radicals was observed in the reaction. The main products were identified by TLC and spectral studies including LC-MS. The oxidation reaction in alkaline medium has been shown to proceed via a Ru(III)-PTX complex, which reacts with monoperiodatocuprate(III) to decompose in a rate determining step followed by a fast step to give the products. The reaction constants involved in different steps of the mechanism were calculated. The activation parameters with respect to the slow step of the mechanism were computed and discussed, and thermodynamic quantities were also determined. The active species of catalyst and oxidant have been identified.  相似文献   

3.
The complex (Trpy)RuCl3 (Trpy = 2,2′:6′,2″‐terpyridine) reacts with alkaline hexacyanoferrate(III) to form a terpyridyl ruthenium(IV)‐oxo complex that catalyzes the oxidation of 2‐propanol and benzyl alcohol by alkaline hexacyanoferrate(III). The reaction kinetics of this catalytic oxidation have been studied photometrically. The reaction rate shows a first‐order dependence on [RU(IV)], a zero‐order dependence on [hexacyanoferrate(III)], a fractional order in [substrate], and a fractional inverse order in [HO]. The kinetic data suggest a reaction mechanism in which the catalytic species and its protonated form oxidize the uncoordinated alcohol in parallel slow steps. Isotope effects, substituent effects, and product studies suggest that both species oxidize alcohol through similar pericyclic processes. The reduced catalytic intermediates react rapidly with hexacyanoferrate(III) and hydroxide to reform the unprotonated catalytic species. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 760–770, 2000  相似文献   

4.
The kinetics of Ru(III)‐catalyzed and Hg(II)‐co‐catalyzed oxidation of D‐glucose (Glc) and cellobiose (Cel) by N‐bromoacetamide (NBA) in the presence of perchloric acid at 40 °C have been investigated. The reactions exhibit the first order kinetics with respect to NBA, but tend towards the zeroth order to higher NBA. The reactions are the first order with respect to Ru(III) and are fractional positive order with respect to [reducing sugar]. Positive effect of Cl? and Hg(OAc)2 on the rate of reaction is also evident in the oxidation of both reducing sugars. A negative effect of variation of H+ and acetamide was observed whereas the ionic strength (µ) of the medium had no influence on the oxidation rate. The rate of reaction decreased with the increase in dielectric constant and this enabled the computation of dAB, the size of the activated complex. Various activation parameters have been evaluated and suitable explanation for the formation of the most reactive activated complex has been given. The main products of the oxidation are the corresponding arabinonic acid and formic acid. HOBr and [RuCl3(H2O)2OH]? were postulated as the reactive species of oxidant and catalyst respectively. A common mechanism, consistent with the kinetic data and supported by the observed effect of ionic strength, dielectric constant and multiple regression analysis, has been proposed. Formation of complex species such as [RuCl3·S·(H2O)OH]? and RuCl3·S·OHgBr·OH during the course of reaction was fully supported by kinetic and spectral evidences.  相似文献   

5.
The kinetics of oxidation of butane-2,3-diol by alkaline hexacyanoferrate (III), catalyzed by ruthenium trichloride has been studied spectrophotometrically. The reaction rate shows a zero-order dependence on oxidant, a first-order dependence on |Ru(III)|T, a Michaelis-Menten dependence on |diol|, and a variation complicated on |OH|. A reaction mechanism involving the existence of two active especies of catalyst, Ru(OH)2+ and Ru(OH)3, is proposed. Each one of the active species of catalyst forms an intermediate complex with the substrate, which disproportionates in the rate determining step. The complex disproportionation involves a hydrogen atom transfer from the α C(SINGLE BOND)H of alcohol to the oxygen of hydroxo ligand of ruthenium, to give Ru(II) and an intermediate radical which is then further oxidized. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 1–7, 1997.  相似文献   

6.
The kinetics of ruthenium(III) catalyzed oxidation of L-proline by diperiodatocuprate(III) (DPC) in alkaline medium at constant ionic strength (0.10 mol dm−3) has been studied spectrophotometrically using a rapid kinetic accessory. The reaction showed first order kinetics in [DPC] and [RuIII] and apparently less than unit order dependence each in L-proline and alkali concentrations. A mechanism involving the formation of a complex between the L-proline and the hydroxylated species of ruthenium (III) has been proposed. The active species of oxidant and catalyst were [Cu(OH)2 (H3IO6)2 (H2IO6)2]4− and [Ru (H2O)5OH]2+ respectively. The reaction constants involved in the mechanism were evaluated. The activation parameters were computed with respect to the slow step of the mechanism and discussed. The text was submitted by the authors in English.  相似文献   

7.
The kinetics of Ru(III) catalysed oxidation of l-leucine by diperiodatoargentate(III) (DPA) in alkaline medium at 298 K and a constant ionic strength of 0.60 mol dm−3 was studied spectrophotometrically. The oxidation products are pentanoic acid and Ag(I). The stoichiometry is [l-leucine]:[DPA] = 1:2. The reaction is of first order in Ru(III) and [DPA] and has less than unit order in both [l-leu] and [alkali]. The oxidation reaction in alkaline medium has been shown to proceed via a Ru(III)–l-leucine complex, which further reacts with one molecule of monoperiodatoargentate(III) (MPA) in a rate determining step followed by other fast steps to give the products. The main products were identified by spot test and spectral studies. The reaction constants involved in the different steps of the mechanism are calculated. The catalytic constant (Kc) was also calculated for the Ru(III) catalysed reaction at different temperatures. From the plots of log Kc versus 1/T, values of activation parameters with respect to the catalyst have been evaluated. The activation parameters with respect to the slow step of the mechanism are computed and discussed, and thermodynamic quantities are also determined. The active species of catalyst and oxidant have been identified.  相似文献   

8.
Summary The kinetics of the ruthenium(III)-catalysed oxidation of aminoalcoholsviz. 2-aminoethanol and 3-aminopropanol by alkaline hexacyanoferrate(III) has been studied spectrophotometrically. The reactions are rapid initially, then follow a second order rate dependence with respect to each of the catalyst and the oxidant. The second order rate dependence with respect to ruthenium(III) was observed for the first time. The order in [Aminoalcohol] and [OH] is unity in each case. A suitable mechanism, consistent with the observed kinetic data is postulated.  相似文献   

9.
A kinetic study of uncatalyzed and Ru(III) catalyzed oxidation of indigo carmine(IC) (disodium 3,3′-dioxobi-indolin-2,2′-ylidene-5,5′-disulphonate) by iodate ion in aqueous sulphuric acid solution is reported. The uncatalyzed reaction order was found to be four; one each with respect to IC and iodate ion and second order with H+ ion. The Ru(III) catalyzed reaction was of fifth order, second order with respect to H+ and first order with respect to reductant, oxidant, and catalyst. Stoichiometric ratios of both reactions were the same with a 3:2 reductant-oxidant ratio. In both uncatalyzed and catalyzed reactions isatin-5-monosulphonic acid (2,3-dioxoindoline-5-sulphonic acid) was observed as the oxidation product. Rate constants for both the reactions are reported. Reaction mechanisms consistent with the experimental data are suggested. Further, a fixed time method is described for the determination of Ru(III), based on its ability to catalyze the oxidation of IC by acidic iodate. Using [H+] 2.25M, [iodate] 1.00 × 10?3M and [IC] 5.0 × 10?5M, in presence of Ru(III), the reaction followed first order kinetics with respect to IC. The interference of various cations, neutral salts, and potassium iodide on the determination of Ru(III) was studied using synthetic mixtures. The selectivity of the method and the recommended procedure are described.  相似文献   

10.
The kinetics and mechanism of Ru(III)-catalyzed oxidation of some aliphatic alcohols by trichloroisocyanuric acid (TCICA) has been studied in aqueous HOAc-HClO4 medium. The reaction is zero order in [TCICA], fractional order in [alcohol] and first order in [Ru(III)]. The reaction is insensitive towards changes in acid concentration. The rate is not affected by an increase in [Cl]. The polar reaction constant (ρ*) was found to be −1.27 at 308 K. A mechanism involving complex formation between the substrate and catalyst in the fast equilibrium step followed by its decomposition in a slow step is proposed.  相似文献   

11.
Manganese(III) (Mn(III)) has been stabilized in weakly acidic solution by means of pyrophosphate and the nature of the complex was elucidated spectrophotometrically. Stoichiometry of Mn(III)‐oxidation of levodopa and methyl dopa in pyrophosphate medium was established in the pH range 2.5–4.0 by iodometric and spectrophotometric methods. The reaction shows a distinct variation in kinetic order with respect to [Mn(III)], a first‐order dependence in the pH range 1.9–2.6, decreasing to fractional order above pH 3. Other common features include first‐order dependence on [dopa], positive fractional order dependence on [H+], and inverse first‐order dependence on [Mn(III)] in the pH range studied. The effects of varying ionic strength and solvent composition were studied. Added ions such as SO42? and ClO4? alter the reaction rate, probably due to the change in the formal redox potential of Mn(III)–Mn(II) couple because of the changes in coordination environment of the oxidizing species. Evidence for the transient existence of the free radical intermediate is given. Cyclic voltametric sensing of levodopa and methyl dopa has ruled out the formation of dopaquinones as oxidation products in the pH range studied. Activation parameters have been evaluated using the Arrhenius and Erying plots. Mechanisms consistent with the kinetic data have been proposed and discussed. These studies are expected to throw some light on dopa metabolism. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 449–457, 2001  相似文献   

12.
The kinetics of Ruthenium(III) chloride mediated oxidation of acetone, 2-butanone, 4-methyl-2-pentanone, 2-pentanone, cyclopentanone, and cyclohexanone by sodium periodate in aqueous HClO4 media was zero-order in [IO4] and first-order in [ketone]. The reaction was independent of added [Ru(III)] and showed first-order dependence on [H+] for all the ketones studied, except acetone. In the case of acetone at [H+] < 0.05 M, the rate was independent of [H+], the order in [Ru(III)] being unity; but at [H+] > 0.05 M the reaction showed unit dependence on [H+] and the order in [Ru(III)] was zero. Ruthenium(VIII) generated in situ is postulated as the hydride abstracting species. A mechanism involving enolization as the rate determining step is proposed. Acetone at lower acidity of the medium is shown to react directly with Ru(VIII). In the absence of ruthenium(III) chloride, the kinetics were first-order in [IO4], [ketone], and [H+]. Structure-reactivity relationship is discussed and thermodynamic parameters are reported. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
Kinetics of oxidation of ethylene glycol and glycerol by acidic solution of N-bromoacetamide (NBA) in the presence of ruthenium (III) chloride as a homogeneous catalyst and mercuric acetate as scavenger in the temperature range of 30–50°C have been reported. The reactions follow identical kinetics, being zero-order in substrate and first-order in Ru(III). First order dependence of the reaction on NBA at its low concentrations tends to zero order in the higher concentration range. Positive effect of [H?] and [Cl?] has been observed. A negative effect of acetamide and ionic strength of the medium is observed while D2O and mercuric acetate show zero effect on the reaction velocity. Various activation parameters have been computed. The main product of the oxidation is corresponding acid. (H2OBr)+ has been postulated as the oxidizing species. A suitable mechanism in conformity with the kinetic data has been proposed.  相似文献   

14.
The kinetics of oxidation of Norfloxacin [1‐ethyl‐6‐fluoro‐1,4‐dihydro‐4‐oxo‐7‐(l‐piperazinyl)‐3‐quinoline carboxylic acid] by chloramine‐B and N‐chlorobenzotriazole has been studied in aqueous acetic acid medium (25% v/v) in the presence of perchloric acid at 323 K. For both the oxidants, the reaction follows a first‐order dependence on [oxidant], a fractional‐order on [Norfloxacin], and an inverse‐fractional order on [H+]. Dependence of reaction rate on ionic strength, reaction product, dielectric constant, solvent isotope, and temperature is studied. Kinetic parameters are evaluated. The reaction products are identified. The proposed reaction mechanism and the derived rate equation are consistent with the observed kinetic data. Formation and decomposition constants for substrate–oxidant complexes are evaluated. ©1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 153–158, 1999  相似文献   

15.
Kinetic investigation in Ir(III)-catalyzed oxidation of fumaric acid (FA) and crotonic acid (CA) in an acidified solution of quinolinium fluorochromate (QFC) has been studied in the temperature range of 30–45 °C. First-order kinetics was observed in the case of catalyst Ir(III) as well as oxidant QFC. The order of reaction with respect to substrate (unsaturated acids) was found to be zero. Increase in [Cl?] showed fractional negative order. The influence of [H+] and ionic strength on the rate was found to be insignificant. The main product of oxidation of fumaric acid (FA) and crotonic acid (CA) were identified as pyruvic acid and acetone, respectively. The reaction has been studied in ten different solvents. The first-order rate constant had no effect with decrease in the dielectric constant of the medium. The values of rate constants observed at four different temperatures (30, 35, 40 and 45 °C) were utilized to calculate the activation parameters. A suitable mechanism in conformity with the kinetic observations has been proposed and the rate law has been derived on the basis of obtained data. A transient complex formed between IrIII and oxidant in a slow and rate-determining step, further reacts with substrate to give the products in a series of fast steps.  相似文献   

16.
The kinetics and mechanism of the uncatalyzed and Ru(III)‐catalyzed oxidation of methylene violet (3‐amino‐7‐diethylamino‐5‐phenyl phenazinium chloride) (MV+) by acidic chlorite is reported. With excess concentrations of other reactants, both uncatalyzed and catalyzed reactions had pseudo‐first‐order kinetics with respect to MV+. The uncatalyzed reaction had first‐order dependence on chlorite and H+ concentrations, but the catalyzed reaction had first‐order dependence on both chlorite and catalyst, and a fractional order with respect to [H+]. The rate coefficient of the uncatalyzed reaction is (5.72 ± 0.19) M?2 s?1, while the catalytic constant for the catalyzed reaction is (22.4 ± 0.3) × 103 M?1 s?1. The basic stoichiometric equation is as follows: 2MV+ + 7ClO2? + 2H+ = 2P + CH3COOH + 4ClO2 + 3Cl?, where P+ = 3‐amino‐7‐ethylamino‐5‐phenyl phenazinium‐10‐N‐oxide. Stoichiometry is dependent on the initial concentration of chlorite present. Consistent with the experimental results, pertinent mechanisms are proposed. The proposed 15‐step mechanism is simulated using literature; experimental and estimated rate coefficients and the simulated plots agreed well with the experimental curves. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 294–303, 2003  相似文献   

17.
Kinetic investigations on Ru(III)‐catalyzed oxidation of cyclopentanol and cyclohexanol by acidic solution of N‐bromoacetamide (NBA) in the presence of mercury(II) acetate as a scavenger have been carried out in the temperature range of 30–45°C. Similar kinetics was followed by both the cyclic alcohols. First‐order kinetics in the lower concentration range of NBA was observed to tend to zero order at its higher concentrations. The reaction exhibits a zero‐order rate dependence with respect to each cyclic alcohol, while it is first order in RuIII. Increase in [H+] and [Cl?] showed positive effect, while successive addition of acetamide exhibited negative effect on the reaction rate. Insignificant effect of sodium perchlorate, D2O, and mercury(II) acetate on the reaction velocity was observed. Cationic bromine has been proposed as the real oxidizing species. Various thermodynamic parameters have been computed. A suitable mechanism in agreement with the kinetic observations has been proposed. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 275–281, 2005  相似文献   

18.
The ruthenium(III) catalyzed oxidation of dimethyl sulfoxide by N-chlorosuccinimide (NCS) in aqueous alkaline medium is found to occur via substrate-catalyst complex formation followed by the interaction of active species of NCS viz., HOCl and the complex in a slow step to yield the products with regeneration of the catalyst. One of the products, succinimide, retards the rate of reaction. The reaction is first order in [NCS] and [Ru(III)], lower than first order in [DMSO] and of inverse fractional order in [OH-]. A suitable mechanism is proposed and the reaction constants of individual steps involved in the mechanism have been evaluated. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Kinetics of the catalytic oxidation of water to molecular oxygen by a tris(bipyridyl) Ru(III) complex is studied in the presence of colloidal cobalt hydroxide stabilized by starch. Oxidant consumption follows the first-order rate law with respect to the oxidant concentration. The dependence of the apparent rate constant of this process on the catalyst concentration, initial oxidant concentration, and initial concentration of its reduced form was determined. The dependence of the oxygen yield on H+ at pH 7–11 and a catalyst concentration of 10-7-10-3 mol1 is studied. An intermediate product of the reaction was found, which is probably a bridged peroxo complex of cobalt. The kinetic scheme and mechanism of the reaction is proposed, which agree with experimental observations.  相似文献   

20.
Ru(III) acts as a catalyst in the oxidative decarboxylation of pyruvic acid by iodate. The reaction is found to be first order with respect to [oxidant] and [catalyst] and fractional order in [pyruvic acid]. Increase in the concentration of H2SO4 and decrease in the dielectric constant of the medium retard the oxidation process. The product of oxidation is acetic acid. A mechanism involving the formation of a complex between the substrate and the catalyst, which reacts with the oxidant in the slow step is proposed. The formation constant of the complex and the rate constant of the slow step are determined. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号