首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prestrain provides high actuation performance in dielectric elastomers (DEs) but increases the bulk, mass, and fatigue of the resulting actuators. Based on our experiments on prestrain‐locked interpenetrating polymer films and the model developed by Zhao and Suo, materials with a certain stress–strain relationship should be capable of high strain without prestrain by suppressing electromechanical instability (EMI). Here, we report the synthesis of an acrylic elastomer capable of achieving high actuation performance without prestrain. DE films were directly fabricated by ultraviolet curing of precursors comprising a mixture of acrylate comonomers. Varying the amount of crosslinker comonomer in the precursor allowed us to tune the stress–strain relationship and completely suppress EMI while maintaining high strain performance. Addition of plasticizing agents increased strain sensitivity. The result is a new DE, synthesized from scratch, capable of high actuation strain (>100%), high energy density (>1 J g?1), and good temperature and frequency response without requiring prestretching. The material can be fabricated using conventional coating techniques and the process can allow for high volume throughput of stacked DE actuators. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

2.
随着仿生机器人、智能控制及人工智能等领域的发展,传统的机械驱动方式已无法满足相关领域对致动系统提出的柔性、高效及多源刺激响应性等要求,因此需发展新型的人工肌肉材料。以碳纳米管和石墨烯为代表的烯碳材料具有轻质、高强、高电导率和柔性等特征,在人工肌肉领域展现出了巨大的应用潜力。以烯碳材料为基元构筑宏观组装体材料,或以烯碳材料为添加相制备纳米复合材料,可在微观和宏观架起桥梁,实现烯碳材料在人工肌肉领域的应用。本文基于上述两种应用形式,综述了烯碳材料在人工肌肉领域的应用进展。首先从一维纤维和二维薄膜的烯碳人工肌肉宏观表现形态出发,介绍了既作为结构材料,又提供了响应、驱动功能的烯碳材料在人工肌肉中的应用。接着从机电性能、可编程的响应形变以及传感功能三个方向,介绍了烯碳材料作为增强赋能相在人工肌肉材料中的功能性应用。最后阐述了基于烯碳材料人工肌肉的机遇与挑战。  相似文献   

3.
pH‐responsive hydrogels are capable of converting chemical energy to mechanical work. To optimize their use as actuators, their response when operating against an external load must be fully characterized. Here, the actuation strain of a model pH‐sensitive hydrogel as a function of different constant loads is studied. The experimental actuation strain, produced by switching the pH from 2 to 12, decreases significantly and monotonically with increasing initial tensile load. Two models are developed to predict the actuation strain as a function of applied stress. Simple mechanical models based on the change in hydrogel modulus and cross sectional area due to the change in pH are unsatisfactory as they predict only a small change in actuation strain with increasing external stress. However, the model based on the elastic and mixing free energy functions derived from the Flory–Huggins theory is found to accurately account for the actuation strain as a function of stress. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 218–225  相似文献   

4.
Artificial muscles made be twisting and coiling polymer fibers provide outstanding performance. However, these materials show inconsistency in their non-loaded length that depends on their thermo-mechanical history. Typically, this behavior has been treated by “training” the samples before any actuation testing. A change in sample length occurs during training but remains consistent during subsequent heat/cool cycles at the same applied load. In this study, the training effect is investigated for a twisted and coiled nylon yarn heated over two temperature ranges: 25–50°C and 50–75°C. The training effect was most obvious in the lower temperature range, but nearly absent in the higher temperature range. When loaded below the glass transition temperature (Tg ~ 40°C) the viscoelastic strain occurs slowly but is rapidly released when the sample is first heated above Tg. The net effect of the first heating through Tg after loading is a small length change because the contraction due to actuation is offset by the expansion due to the release of the viscoelastic strain. A simple spring and dashpot model was developed and by changing only two relaxation times it was possible to simulate the observed training phenomena.  相似文献   

5.
Similar to shape memory, the stress in a stimulus responsive polymer can also be programmed, stored, and retrieved reversibly upon an external stimulus, and known as stress memory. Herein, the stress analysis in a semicrystalline polyurethane is investigated to unveil the total stress–strain components of the memory polymer. The evolution of stress under different temperature and strain levels is determined experimentally. A constitutive model based on phase transition was further used to predict and characterize the individual stress components during the thermomechanical process. In contrast to earlier models, a new approach of using relaxed modulus (RM) has been proposed to predict the stress components in tensile programming condition. The predicted results are having significant agreement with the experimental data. The quantitative stress analysis can help in engineering the products more precisely, where the controllable stimulus responsive stress is needed in multidisciplinary arenas such as pressure garments, massage devices, and artificial muscles etc. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 941–947  相似文献   

6.
In this article, we have aimed to mechanically characterize the nylon 6 single nanofiber and nanofiber mats. We have started by providing a critical review of the developed mechanical characterization testing methods of single nanofiber. It has been found that the tensile test method provides information about the mechanical properties of the nanofiber such as tensile strength, elastic modulus and strain at break. We have carried out a tensile test for nanofiber/composite MWCNTs nanofiber mats to further characterize the effect of the MWCNTs filling fiber architecture. In addition, we have designed and implemented a novel simple laboratory set‐up for performing tensile test of single nanofibers. As a result, we have established the stress–strain curve for single nylon 6 nanofibers allowing us to define the tensile strength, axial tensile modulus and ultimate strain of this nanofiber. The compared values of the tensile strength, axial modulus and ultimate strain for nylon 6 nanofiber with those of conventional nylon 6 microfiber have indicated that some of the nylon 6 nanofiber molecule chains have not been oriented well along the nanofiber axis during electrospinning and through the alignment mechanism. Finally, we have explained how we can improve the mechanical properties of nylon 6 nanofibers and discussed how to overcome the tensile testing challenges of single nanofibers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1719–1731, 2010  相似文献   

7.
Large‐scale torsional actuation occurs in twisted fibers and yarns as a result of volume change induced electrochemically, thermally, photonically, and other means. A quantitative relationship between torsional actuation (stroke and torque) and volume change is here introduced. The analysis is based on experimental investigation of the effects of fiber diameter and inserted twist on the torsional stroke and torque measured when heating and cooling nylon 6 fibers over the temperature range of 26–62 °C. The results show that the torsional stroke depends only on the amount of twist inserted into the fiber and is independent of fiber diameter. The torque generated is larger in fibers with more inserted twist and with larger diameters. These results are successfully modeled using a single‐helix approximation of the twisted fiber structure. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1278–1286  相似文献   

8.
A type of quick water-responsive shape memory hybrids is fabricated by introducing cellulose nanofibrous mats as the filler in a polymeric matrix. Cellulose nanofibrous mats are obtained through hydrolyzing electrospun cellulose acetate (CA) nanofibers, then casted in thermoplastic polyurethane (TPU) solution to form the hybrids. The quick shape memory behavior of the formed hybrids is demonstrated using dynamic mechanical analysis (DMA) and stress–strain cyclic test. According to a predetermined protocol, the hybrids present desirable shape fixation and recovery, and the elastic modulus (E′) is shown to be responsive promptly and reversibly against drying and wetting cycle. Shape memory mechanism of the hybrids involves the reversible and competitive hydrogen bonds within cellulose before and after water immersion as well as the entropy elasticity of the TPU matrix. This study can pave a way to design novel smart materials by facile methods through incorporating natural nanomaterials as water sensitive fillers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 767–775  相似文献   

9.
Exfoliated nylon‐11/layered silicate nanocomposites were prepared via in situ polymerization by dispersing organoclay in 11‐aminoundecanoic acid monomer. The original clay was modified by a novel method with 11‐aminoundecanoic acid. In situ Fourier transform infrared spectroscopy results show that stronger hydrogen bonds exist between nylon‐11 and organoclay than that of between nylon‐11 and original clay. The linear dynamic viscoelasticity of organoclay nanocomposites was investigated. Before taking rheological measurements, the exfoliated and intercalating structures and the thermal properties were characterized using X‐ray diffraction, transmission electron microscopy, differential scanning calorimetry, and thermogravimetric analysis. The results show that the clay was uniformly distributed in nylon‐11 matrix during in situ polymerization of clay with 4 wt % or less. The presence of clay in nylon‐11 matrix increased the crystallization temperature and the thermal stability of nanocomposites prepared. Rheological properties such as storage modulus, loss modulus, and relative viscosity have close relationship with the dispersion favorably compatible with the organically modified clay. Comparing with neat nylon‐11, the nanocomposites show much higher dynamic modulus and stronger shear thinning behavior. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2161–2172, 2006  相似文献   

10.
The annealing at 373 K of ultrastrong, gel‐spun polyethylene (PE) has been studied. At this temperature, the fibers show no significant shrinkage. Still, a significant decrease in the mechanical properties is observed. The fibers have been analyzed with differential scanning calorimetry (DSC), temperature‐modulated differential scanning calorimetry (TMDSC), atomic force microscopy (AFM), and small‐angle X‐ray scattering (SAXS). During the annealing, the glass transition of the intermediate phase is exceeded, as shown by DSC. When split for structure analysis by AFM, the annealed fibers undergo plastic deformation around the base fibrils instead of brittle fracture. The quasi‐isothermal TMDSC experiments are compared to the minor structural changes seen with SAXS and AFM. The loss of performance of the PE fibers at 373 K is suggested to be caused by the oriented intermediate phase, and not by major changes in the structure or morphology. The overall metastable, semicrystalline structure is shown by TMDSC to posses local regions that can melt reversibly. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 403–417, 2003  相似文献   

11.
Structural changes during tensile deformation in semicrystalline polymers are studied by the analysis of both small- and wide-angle X-ray scattering data from polyamide-6 fibers. The strain in the lamellar spacing is about the same as or higher than the fiber strain, suggesting that fiber elongation occurs by the deformation of the lamellar stack rather than slippage of the fibrils, especially during initial stages of elongation. The modulus of the lamellar structure is approximately 5 GN/m2, and this is close to the fiber modulus, which is only 2–3% of the crystal modulus. Fiber modulus is, therefore, determined by the lamellar structure as much as by the interfibrillar oriented chain segments. The four-point small-angle X-ray scattering pattern in the relaxed fiber transforms reversibly into a two-point pattern under strain. The structures that correspond to these two patterns, the bistable states of the lamellae, coexist until fiber breakage. The structure that gives rise to the two-point pattern determines the ultimate strength of the fiber. Despite the small crystalline strain in the fiber direction, it is possible to follow the almost fully reversible changes in the orientation, size, and unit cell of the lamellar crystals. It is proposed that the appearance of the two-point pattern, the decrease in the lateral crystallite size, and the increase in the stack diameter are due to tilting of the lamellar surface caused by large-scale reversible strain in the interlamellar amorphous regions. This tilt is accomplished by slippage of the hydrogen-bonded sheets along the chain axis. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 691–705, 2002  相似文献   

12.
A hot‐air (HA) drawing method was applied to nylon 6 fibers to improve their mechanical properties and to study the effect of the strain rate in the HA drawing on their mechanical properties and microstructure. The HA drawing was carried out by the HA, controlled at a constant temperature, being blown against an original nylon 6 fiber connected to a weight. As the HA blew against the fiber at a flow rate of 90 liter/min, the fiber elongated instantaneously at strain rates ranging from 9.1 to 17.4 s−1. The strain rate in the HA drawing increased with increasing drawing temperature and applied tension. When the HA drawing was carried out at a drawing temperature of 240 °C under an applied tension of 34.6 MPa, the strain rate was at its highest value, 17.4 s−1. The draw ratio, birefringence, crystallite orientation factor, and mechanical properties increased as the strain rate increased. The fiber drawn at the highest strain rate had a birefringence of 0.063, a degree of crystallinity of 47%, and a dynamic storage modulus of 20 GPa at 25 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1137–1145, 2000  相似文献   

13.
The purpose of this study was to investigate the influence of cross‐linking on the thermomechanical behavior of liquid‐crystalline elastomers (LCEs). Main‐chain LCE networks were synthesized via a thiol‐acrylate Michael addition reaction. The robust nature of this reaction allowed for tailoring of the behavior of the LCEs by varying the concentration and functionality of the cross‐linker. The isotropic rubbery modulus, glass transition temperature, and strain‐to‐failure showed strong dependence on cross‐linker concentration and ranged from 0.9 MPa, 3 °C, and 105% to 3.2 MPa, 25 °C, and 853%, respectively. The isotropic transition temperature (Ti) was shown to be influenced by the functionality of the cross‐linker, ranging from 70 °C to 80 °C for tri‐ and tetra‐functional cross‐linkers. The magnitude of actuation can be tailored by controlling the amount of cross‐linker and applied stress. Actuation increased with increased applied stress and decreased with greater amounts of cross‐linking. The maximum strain actuation achieved was 296% under 100 kPa of bias stress, which resulted in work capacity of 296 kJ/m3 for the lowest cross‐linked networks. Overall, the experimental results provide a fundamental insight linking thermomechanical properties and actuation to a homogenous polydomain nematic LCE networks with order parameters of 0.80 when stretched. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 157–168  相似文献   

14.
This article establishes the processing–microstructure–motion–property relationship of high‐speed melt‐spun nylon‐6 fibers. From solid‐state 1H NMR T (spin–lattice relaxation time in the rotating frame) relaxation studies, all nylon‐6 fibers spun at 4500–6100 m/min showed three‐component exponential decay with the time constants T1ρ,I, T1ρ,II, and T1ρ,III, indicating that there existed three different motional phases. These phases were assigned to immobile crystalline, intermediate rigid amorphous, and mobile amorphous regions. The determination of the correlation time (τc) of the respective phases provided information about the local molecular mobility of each phase with respect to the spinning speed. As the spinning speed increased, τc of the crystalline region increased (4500–5200 m/min) and then reached a plateau. However, τc for the rigid amorphous region increased from 5200 m/min onward, indicating that the rigid amorphous chains were more oriented and constrained in the spinning speed range of 5500–6100 m/min. The drastic increase of the maximum thermal stress for all fibers from 5500 to 6100 m/min was coincident with the τc characteristics of the rigid amorphous region. The significant increase in tenacity and Young's modulus and the large decrease in elongation at break at 5500–6100 m/min were also in good agreement with the local molecular motion of the intermediate rigid amorphous phase in the nylon‐6 fibers. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 993–1000, 2001  相似文献   

15.
The effects of pristine and amino‐functionalized multiwalled carbon nanotubes (MWNTs) on the crystallization behaviors of nylon‐6 were investigated by differential scanning calorimetry and X‐ray diffraction. The results indicate the presence of polymorphism in nylon‐6 and its composites, which is dependent on the MWNTs concentration and the cooling rate. More MWNTs and slow cooling from the melt favors the formation of α crystalline form. With the increase in cooling rates, the crystallinity of neat nylon‐6 decreases, and that of the composites decreases initially but increases afterward. Moreover, the degree of crystallinity of the composites is higher than neat nylon‐6 under high cooling rates, counter to what is observed under low cooling rates. The heterogeneous nucleation induced by MWNTs and the restricted mobility of polymer chains are considered as the main factors. Furthermore, addition of MWNTs increases the crystallization rate of α crystalline form but amino‐functionalization of MWNTs weakens this effect. The influence of thermal treatment on the crystalline structure of MWNTs/nylon‐6 composites is also discussed. A γ–α phase transition takes place at lower temperature for MWNTs/nylon‐6 composites than for nylon‐6. The annealing peaks of the composites annealed at 160 °C are higher than that of neat nylon‐6, and the highest annealing peak is obtained for amino‐functionalized MWNTs/nylon‐6 composites. This phenomenon is closely related to the different nucleation and recrystallization behaviors produced by various MWNTs in confined space. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1499–1512, 2006  相似文献   

16.
Nylon 46 fibers produced by the high-temperature zone-drawing treatment were treated by repeating high-tension annealing treatments, that is, a high-tension multiannealing (HTMA) treatment to improve their tensile properties. The HTMA treatment was carried out at a repetition time of 10 times and treating temperature of 110°C under high tension (538.2 MPa) close to the tensile strength at break. Although the HTMA treatment was carried out at 110°C, which is much lower than the crystallization temperature of 265°C for nylon 46, the degree of crystallinity increased up to 59%. The orientation factor of crystallites increased dramatically up to 0.949 by the first high-temperature zone-drawing treatment and slightly during the subsequent treatments. This observation indicated that the orientation of crystallites due to slippage among molecular chains did not occur during the HTMA treatment. The treatments shifted the melting peak to slightly higher temperatures, and the HTMA fiber has a melting endotherm peaking at 285°C. The fiber obtained finally had a storage modulus of 12.5 GPa at 25°C. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2737–2743, 1998  相似文献   

17.
A micro‐FTIR measurement has been conducted to explore the molecular orientation of amorphous phase in the nylon 6/clay nanocomposite at large strain. Our results indicate that the molecular orientation in such a nanocomposite during stretching is lower than that observed for the pure nylon 6 counterpart, which is further evidenced by the true stress‐strain dependence. The relaxation of the molecular network, resulted from the destruction of γ‐crystals in part and mostly from microvoding (demonstrated by volume dilatation and 2D‐SAXS measurements), should be responsible for the suppressed molecular orientation in the nylon 6/clay nanocomposite. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 514–519, 2010  相似文献   

18.
The thermal response of tussah (Antheraea pernyi) silk fibroin films treated with different water–methanol solutions at 20°C was studied by means of dynamic mechanical (DMA) and thermomechanical (TMA) analyses as a function of methanol concentration and treatment time. The DMA curves of α-helix films (treated with ≥80% v/v methanol for 2 min and 100% methanol for 30 min) showed the sharp fall of storage modulus at about 190°C, and the loss peak in the range 207–213°C. The TMA curves were characterized by a thermal shrinkage at 209–211°C, immediately followed by an abrupt extension leading to film failure. Both storage and loss modulus curves significantly shifted upwards for β-sheet films, obtained by treatment with ≤60% methanol for 30 min. The loss peak exhibited a maximum at 236°C. Accordingly, the TMA shrinkage at above 200°C disappeared. The films broke beyond 330°C, failure being preceded by a broad contraction step. Intermediate DMA and TMA patterns were observed for the other solvent-treated films. The loss peak shifted to higher temperature (219–220°C), and a minor loss modulus component appeared at about 230°C. This coincided with the onset of a plateau region in the storage modulus curve. The TMA extension–contraction events in the range 200–300°C weakened, and the samples displayed a final broad contraction (peak temperature 326–338°C) before breaking. The DMA and TMA response of these films was attributed to partial annealing by solvent treatment, which resulted in the formation of nuclei of β-sheet crystallization within the film matrix. The increased thermal stability was probably due to the small β-sheet crystals formed, which acted as high-strength junctions between adjacent random coil and α-helix domains. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2717–2724, 1998  相似文献   

19.
A study has been carried out of the differences in mechanical properties of oriented fibers of poly(ethylene terephthalate) (2GT), poly(trimethylene terephthalate) (3GT), and poly(tetramethylene terephthalate) (4GT). The properties studied include the tensile stress–strain behavior, the recovery from strain, shrinkage at 100°C and the glass-transition temperatures. The stress–strain curves of the three materials differ markedly. 2GT shows a monotonic increase in stress with increasing strain up to failure, which occurs at ~20% strain, and the oriented fibers possess a comparatively high initial modulus. 3GT shows a much lower initial modulus and there is an inflection in the stress–strain curve at about 5% strain. The stress–strain curve of 4GT shows a number of distinct features. Although the initial modulus of 4GT is similar to that of 3GT, the stress–strain curve shows a pronounced plateau in the region between 4% and 12% strain. At higher strains the stresses rise rapidly before failure. These features of the stress–strain curves in the three polymers can be related to previous studies where the x-ray diffraction spectrum and the Raman spectrum have been examined for fibers under stress. The ranking of both the recovery and shrinkage behavior of these materials is in the order 3GT > 4GT > 2GT. These results can also be understood in terms of the results of the previous structural studies, and it is concluded that the molecular conformations in both the crystalline and noncrystalline regions play a key role in determining the mechanical behavior.  相似文献   

20.
The crystalline structure and fibrillar texture of nylon‐6 fibers filled with nanosized particles were investigated using wide‐angle and small‐angle X‐ray scattering. As‐spun fibers filled with organic nanoparticles consisting of aromatic polyamide‐like hyperbranched molecules with amine‐terminating groups exhibited strong modification of both the molecular orientation and the crystalline structure compared with that of unfilled spun fibers. Montmorillonite‐filled fibers mainly exhibited orientation improvement. The differences are discussed in terms of the rheological and nucleating effects during spinning. Drawing at 140 °C involves structural changes that resulted in the three kinds of fibers having a similar crystalline form and molecular orientation. In parallel, after significant strain‐induced changes, the microfibrillar texture of the various fibers displayed subtle differences at the ultimate stage of drawing. The changes in the fibril long period and fibril radius as a function of draw ratio are discussed in terms of the two sequential deformation processes of microfibril stretching and microfibril slipping. The occurrence of interfibrillar strain‐induced cavitation is discussed in relation to the nature of the interactions between the filler and the nylon‐6 matrix. And, finally, the mechanical properties are discussed in relation to the filler–matrix interaction. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3876–3892, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号