首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In this work, a simple, facile, and sensitive magnetic solid‐phase extraction method was developed for the extraction and enrichment of three representative steroid hormones before high‐performance liquid chromatography analysis. Gold‐modified Fe3O4 nanoparticles, as novel magnetic adsorbents, were prepared by a rapid and environmentally friendly procedure in which polydopamine served as the reductant as well as the stabilizer for the gold nanoparticles, thus successfully avoiding the use of some toxic reagents. To obtain maximum extraction efficiency, several significant factors affecting the preconcentration steps, including the amount of adsorbent, extraction time, pH of the sample solution, and the desorption conditions, were optimized, and the enrichment factors for three steroids were all higher than 90. The validity of the established method was evaluated and good analytical characteristics were obtained. A wide linearity range (0.8–500 μg/L for all the analytes) was attained with good correlation (R2 ≥ 0.991). The low limits of detection were 0.20–0.25 μg/L, and the relative standard deviations ranged from 0.83 to 4.63%, demonstrating a good precision. The proposed method was also successfully applied to the extraction and analysis of steroids in urine, milk, and water samples with satisfactory results, which showed its reliability and feasibility in real sample analysis.  相似文献   

2.
An automated three‐phase hollow fiber liquid‐phase microextraction based on two immiscible organic solvents followed by high‐performance liquid chromatography with UV–Vis detection method was applied for the extraction and determination of exemestane, letrozole, and paclitaxel in water and urine samples. n‐Dodecane was selected as the supported liquid membrane and its polarity was justified by trioctylphosphine oxide. Acetonitrile was used as an organic acceptor phase with desirable immiscibility having n‐dodecane. All the effective parameters of the microextraction procedure such as type of the organic acceptor phase, the supported liquid membrane composition, extraction time, pH of the donor phase, hollow fiber length, stirring rate, and ionic strength were evaluated and optimized separately by a one variable at‐a‐time method. Under the optimal conditions, the linear dynamic ranges were 1.8–200 (R2 = 0.9991), 0.9–200 (R2 = 0.9987) and 1.2–200 μg/L (R2 = 0.9983), and the limits of detection were 0.6, 0.3, and 0.4 μg/L for exemestane, letrozole, and paclitaxel, respectively. To evaluate the capability of the proposed method in the analysis of biological samples, three different urinary samples were analyzed under the optimal conditions. The relative recoveries of the three pharmaceuticals were in the range of 91–107.3% for these three analytes.  相似文献   

3.
In the current study, a novel technique for extraction and determination of trans,trans‐muconic acid, hippuric acid, and mandelic acid was developed by means of ion‐pair‐based hollow fiber liquid‐phase microextraction in the three‐phase mode. Important factors affecting the extraction efficiency of the method were investigated and optimized. These metabolites were extracted from 10 mL of the source phase into a supported liquid membrane containing 1‐octanol and 10% w/v of Aliquat 336 as the ionic carrier followed by high‐performance liquid chromatography analysis. The organic phase immobilized in the pores of a hollow fiber was back‐extracted into 24 μL of a solution containing 3.0 mol/L sodium chloride placed inside the lumen of the fiber. A very high preconcentration of 212‐ to 440‐fold, limit of detection of 0.1–7 μg/L, and relative recovery of 87–95% were obtained under the optimized conditions of this method. The relative standard deviation values for within‐day and between‐day precisions were calculated at 2.9–8.5 and 4.3–11.2%, respectively. The method was successfully applied to urine samples from volunteers at different work environments. The results demonstrated that the method can be used as a sensitive and effective technique for the determination of the metabolites in urine.  相似文献   

4.
Ionic liquids have been widely used in different fields by advantage of their specific properties. In this work, 1‐methyl‐3‐(3‐trimethoxysilyl propyl)imidazolium chloride was prepared and chemically bonded onto basalt fibers for in‐tube solid‐phase microextraction. Through combining in‐tube extraction device with high‐performance liquid chromatography equipped with a diode array detector, an online enrichment and analysis method for eight polycyclic aromatic hydrocarbons was established under the optimum conditions. A good enrichment factor (52–814), good linearity (0.10–15 and 0.20–15 μg/L), low limits of detection (0.03–0.05 μg/L), and low limits of quantitation (0.10–0.20 μg/L) were achieved using a sample volume of 50 mL. Analysis method was applied to the real samples including the groundwater and wastewater from a chemical industry park, some target analytes were detected and the relative recoveries were in the range of 80.4–116.8%.  相似文献   

5.
A novel oil‐in‐salt liquid‐phase microextraction was developed and introduced for the extraction and concentration of the trace levels of active alkaloids in Coptis chinensis prior to being analyzed by high‐performance liquid chromatography with ultraviolet detection. Also, the oil‐in‐salt extraction mechanism was analyzed, the enrichment factor and extraction recovery were redefined, and the proposed method was compared with other methods. In the approach, the mixed solvent of pentanol/octanol (6:4, v/v) and NaCl (20% w/v) are immobilized on the permutite surface in turn to form oil‐in‐salt double membranes, through which the target analytes can be molecularized though salting‐out effect and be extracted by organic solvent. The main parameters affecting the approach were investigated and optimized. Under the optimized conditions, the enrichment factors of the analytes were 30–117, the linear ranges were 0.002–2 μg/mL for jatrorrhizine, coptisine, and palmatine, and 0.001–3 μg/mL for berberine (r 2 ≥ 0.9923). The limits of detection were less than 1 ng/mL. Satisfactory recoveries (84.3%–120.3%) and precision (0.9%–7.5%) were also obtained. These results confirm that the approach is a simple and reliable sample pretreatment procedure and allows for the quantification of active alkaloids in C. chinensis at actual concentration levels.  相似文献   

6.
A new facile magnetic micro‐solid‐phase extraction coupled to gas chromatography and mass spectrometry detection was developed for the extraction and determination of selected antidepressant drugs in biological fluids using magnetite‐MCM‐41 as adsorbent. The synthesized sorbent was characterized by several spectroscopic techniques. The maximum extraction efficiency for extraction of 500 μg/L antidepressant drugs from aqueous solution was obtained with 15 mg of magnetite‐MCM‐41 at pH 12. The analyte was desorbed using 100 μL of acetonitrile prior to gas chromatography determination. This method was rapid in which the adsorption procedure was completed in 60 s. Under the optimized conditions using 15 mL of antidepressant drugs sample, the calibration curve showed good linearity in the range of 0.05–500 μg/L (r 2 = 0.996–0.999). Good limits of detection (0.008–0.010 μg/L) were obtained for the analytes with good relative standard deviations of <8.0% (n  = 5) for the determination of 0.1, 5.0, and 500.0 μg/L of antidepressant drugs. This method was successfully applied to the determination of amitriptyline and chlorpromazine in plasma and urine samples. The recoveries of spiked plasma and urine samples were in the range of 86.1–115.4%. Results indicate that magnetite micro‐solid‐phase extraction with gas chromatography and mass spectrometry is a convenient, fast, and economical method for the extraction and determination of amitriptyline and chlorpromazine in biological samples.  相似文献   

7.
A new analytical method for the simultaneous determination of trace levels of seven prohibited N‐nitrosamines (N‐nitrosodimethylamine, N‐nitrosoethylmethylamine, N‐nitrosopyrrolidine, N‐nitrosodiethylamine, N‐nitrosopiperidine, N‐nitrosomorpholine, and N‐nitrosodiethanolamine) in cosmetic products has been developed. The method is based on vortex‐assisted reversed‐phase dispersive liquid–liquid microextraction, which allows the extraction of highly polar compounds, followed by liquid chromatography with mass spectrometry. The variables involved in the extraction process were studied to obtain the highest enrichment factor. Under the selected conditions, 75 μL of water as extraction solvent was added to 5 mL of n‐hexane sample solution and assisted by vortex mixing during 30 s to form the cloudy solution. The method was successfully validated showing good linearity (0.5–50 ng/mL), enrichment factors up to 65 depending on the target compound, limits of detection values of 1.8–50 ng/g, and good repeatability (RSD < 9.8%). Finally, the proposed method was applied to different cosmetic samples. Quantitative relative recovery values (80–113%) were obtained, thus showing that matrix effects were negligible. The achieved analytical features of the proposed method, besides of its simplicity and affordability, make it useful to perform the quality control of cosmetic products to ensure the safety of consumers.  相似文献   

8.
The analysis of plant growth regulators presents a challenge due to their trace quantities and complex matrices. A novel, simple, and effective analytical method for the determination of three trace acidic plant growth regulators in Anoectochilus roxburghii (Wall.) Lindl was developed to address this issue. Three‐phase hollow fiber liquid‐phase microextraction combined with high‐performance liquid chromatography was applied for the enrichment, purification, and determination of three acidic plant growth regulators, namely, indole‐3‐acetic‐acid, indole‐3‐butyric‐acid, and (+)‐abscisic acid. The factors affecting extraction performance, including extractant species, pH of donor and acceptor phases, salt addition dosage, extraction time, temperature, and stirring rate, were investigated and optimized. Under optimum conditions, the proposed method provided good linearity (R2, 0.9994–0.9999), low limit of detection (0.038–0.12 ng/mL), and acceptable relative recoveries (56.7–117.6%). The enrichment factors were between 153 and 328. The developed method was successfully applied to the enrichment and determination of plant growth regulators in Anoectochilus roxburghii (Wall.) Lindl and exhibited increased purification capacity, higher sensitivity, and decreased organic solvent consumption compared with conventional sample preparation methods. This method may provide a testing platform for the monitoring of plant growth regulator residues, ensuring the safe and effective use of traditional Chinese medicine.  相似文献   

9.
A three‐phase hollow‐fiber liquid‐phase microextraction based on deep eutectic solvent as acceptor phase was developed and coupled with high‐performance capillary electrophoresis for the simultaneous extraction, enrichment, and determination of main active compounds (hesperidin, honokiol, shikonin, magnolol, emodin, and β,β′‐dimethylacrylshikonin) in a traditional Chinese medicinal formula. In this procedure, two hollow fibers, impregnated with n‐heptanol/n‐nonanol (7:3, v/v) mixture in wall pores as the extraction phase and a combination (9:1, v/v) of methyltrioctylammonium chloride/glycerol (1:3, n/n) and methanol in lumen as the acceptor phase, were immersed in the aqueous sample phase. The target analytes in the sample solution were first extracted through the organic phase, and further back‐extracted to the acceptor phase during the stirring process. Important extraction parameters such as types and composition of extraction solvent and deep eutectic solvent, sample phase pH, stirring rate, and extraction time were investigated and optimized. Under the optimal conditions, detection limits were 0.3–0.8 ng/mL with enrichment factors of 6–114 for the analytes and linearities of 0.001–13 μg/mL (r2 ≥ 0.9901). The developed method was successfully applied to the simultaneous extraction and concentration of the main active compounds in a formula of Zi‐Cao‐Cheng‐Qi decoction with the major advantages of convenience, effectiveness, and environmentally friendliness.  相似文献   

10.
Nano‐molybdenum trioxide was prepared from nano‐molybdenum disulfide by simple firing in muffle furnace. Nano‐molybdenum trioxide was used as the extraction coating on the stainless steel wire. Four wires were filled in a polyetheretherketone tube to get an extraction tube. The tube was connected to the six‐port valve of a high performance liquid chromatograph, and the online analysis system was constructed. Extraction selectivity of the tube for different types of compounds, including polycyclic aromatic hydrocarbons, plasticizers, estrogens, anilines and neonicotinoids, was studied. Good enrichment ability for polycyclic aromatic hydrocarbons, but the extraction efficiency of others was not satisfactory. Using eight polycyclic aromatic hydrocarbons as the targets, an analytical method was established after optimizing main factors such as sampling volume, sampling rate, methanol content, and desorption time. The established method exhibited wide linear range to 0.016–20.00 μg/L and low limits of detection to 0.005 μg/L, and the enrichment factors can be up to 2443. The method was applied to the detection of trace polycyclic aromatic hydrocarbons in tap water and river water, and a good recovery was obtained. The tube showed good durability and chemical stability, and it still remained good extraction effect after more than 140 run.  相似文献   

11.
Stainless‐steel wires coated with mesoporous titanium oxide were placed into a polyether ether ketone tube for in‐tube solid‐phase microextraction, and the coating sorbent was characterized by X‐ray diffraction and scanning electron microscopy. It was combined with high‐performance liquid chromatography to build an online system. Using eight polycyclic aromatic hydrocarbons as the analytes, some conditions including sample flow rate, sample volume, organic solvent content, and desorption time were investigated. Under optimum conditions, an online analysis method was established and provided good linearity (0.03–30 μg/L), low detection limits (0.01–0.10 μg/L), and high enrichment factors (77.6–678). The method was applied to determine target analytes in river water and water sample of coal ash, and the recoveries are in the range of 80.6–106.6 and 80.9–103.5%, respectively. Compared with estrogens and plasticizers, extraction coating shows better extraction efficiency for polycyclic aromatic hydrocarbons.  相似文献   

12.
A novel hollow‐fiber liquid‐phase microextraction based on oil‐in‐salt was proposed and introduced for the simultaneous extraction and enrichment of the main active compounds of hesperidin, honokiol, shikonin, magnolol, emodin, and β,β′‐dimethylacrylshikonin in a formula of Zi‐Cao‐Cheng‐Qi decoction and the single herb, Fructus Aurantii Immaturus , Cortex Magnoliae Officinalis , Radix et Rhizoma , and Lithospermum erythrorhizon , composing the formula prior to their analysis by high‐performance liquid chromatography. The results obtained by the proposed procedure were compared with those obtained by conventional hollow‐fiber liquid‐phase microextraction, and the proposed procedure mechanism was described. In the procedure, a hollow‐fiber segment was first immersed in organic solvent to fill the solvent in the fiber lumen and wall pore, and then the fiber was again immersed into sodium chloride solution to cover a thin salt membrane on the fiber wall pore filling organic solvent. Under the optimum conditions, the enrichment factors of the analytes were 0.6–109.4, linearities were 0.002–12 μg/mL with r 2 ≥ 0.9950, detection limits were 0.6–12 ng/mL, respectively. The results showed that oil‐in‐salt hollow‐fiber liquid‐phase microextraction is a simple and effective sample pretreatment procedure and suitable for the simultaneous extraction and concentration of trace‐level active compounds in traditional Chinese medicine.  相似文献   

13.
A novel three‐phase hollow fiber liquid‐phase microextraction was developed based on reverse micelle as extraction solvent and acceptor phase, and compared with conventional two‐phase hollow fiber liquid‐phase microextraction. Both procedures were used in the extraction and concentration of four cinnamic acids (caffeic acid, p‐hydroxycinnamic acid, ferulic acid, and cinnamic acid) in traditional Chinese medicines prior to high‐performance liquid chromatography analysis. Parameters affecting the two procedures were investigated and optimized to obtain the optimum enrichment factors. The mechanism of the developed procedure was explored and elucidated by comparison with conventional two‐phase hollow fiber liquid‐phase microextraction. Under the optimized conditions, the analytes’ enrichment factors were between 50 and 118 for the proposed procedure, and 31–96 for conventional two‐phase mode. Satisfactory linear ranges (r2 ≥ 0.99), detection limits (0.1–0.6 ng/mL), precisions (<9.2%), and accuracies (recoveries: 80–123.1%) were observed for the two procedures. The results showed that the enrichment capacity of the proposed procedure for the cinnamic acids is better than that of conventional two‐phase procedure, and both are eco‐friendly, simple, and effective for the enrichment and detection of cinnamic acids in traditional Chinese medicines.  相似文献   

14.
In this work, a fast and effective dispersive liquid–liquid microextraction was developed for the isolation and preconcentration of free 17 β‐estradiol, the main human estrogen, from real human urine samples. To optimize the extraction technique, few important parameters such as type and volume of extraction and dispersive solvents, centrifugation conditions, effect of salt addition, and extraction time were studied. Optimal conditions were obtained when injecting 600 μL mixture of tetrachloromethane as extraction solvent and ethanol as dispersive solvent (1:5, v/v) into 2 mL of urine containing 8% NaCl and following centrifugation at 10 000 rpm, thus reaching enrichment factor 28 and extraction recovery 98% for estradiol. Procedure was evaluated by means of high‐performance liquid chromatography with UV detection (λ = 280 nm) using a C‐18 column and methanol/water (60:40, v/v) as the mobile phase. The method was linear within the concentration range 1.0–250.0 mg/L (r  = 0.9997) and provided a limit of detection of 0.25 mg/L. The proposed method was applied to the determination of free estradiol in real human pregnancy urine.  相似文献   

15.
A method based on ultrasound‐assisted liquid–liquid extraction and high‐performance liquid chromatography has been optimized for the determination of six polybrominated diphenyl ether congeners. The optimal condition relevant to the extraction was first investigated, more than 98.7 ± 0.7% recovery was achieved with dichloromethane as extractant, 5 min extraction time, and three cycles of ultrasound‐assisted liquid–liquid extraction. Then multiple function was employed to optimize polybrominated diphenyl ether detection conditions with overall resolution and chromatography signal area as the responses. The condition chosen in this experiment was methanol/water 93:7 v/v, flow rate 0.80 mL/min, column temperature 30.0°C. The optimized technique revealed good linearity (R2 > 0.9962 over a concentration range of 1–100 μg/L) and repeatability (relative standard deviation < 6.3%). Furthermore, the detection limit (S/N = 3) of the method were ranged from 0.02 to 0.13 μg/L and the quantification limit (S/N = 10) ranged from 0.07 to 0.35 μg/L. Finally, the proposed method was applied to spiked samples and satisfactory results were achieved. These results indicate that ultrasound‐assisted liquid–liquid extraction coupled with high‐performance liquid chromatography was effective to identify and quantify the complex polybrominated diphenyl ethers in effluent samples.  相似文献   

16.
8‐Hydroxy‐2′‐deoxyguanosine (8‐OHdG) is a sensitive biomarker for DNA oxidative damage. However, its determination in human urine is confounded by trace level and complex matrix. In this study, a new configuration of on‐line solid phase microextraction coupled to high performance liquid chromatography‐ultraviolet detection was established with molecularly imprinted monolithic column as extraction sorbent. The tailor made monolith exhibited high extraction efficiency with the enrichment factor 101.84 for 8‐OHdG owing to its special porous structure and inherent selectivity. Under optimal condition, appreciable sensitivity had been achieved for this incorporation with limit of detection 2.04 nmol/L (S/N = 3) and limit of quantification 7.12 nmol/L (S/N = 10), respectively. Precise determination with wide range linearity (0.007–5.00 μmol/L) afforded a practical alternative in urinary 8‐OHdG analysis and 107 different subjects had been successfully analyzed. This newly developed method embodied useful prospect for the investigation of DNA oxidative damage with less expense, convenient maintenance and ease of operation  相似文献   

17.
This study proposed a new ballpoint connector‐protected salt‐oil‐salt liquid phase microextraction for extraction and enrichment of trace rhein and chrysophanol in rhubarb prior to determination of the analytes by high performance liquid chromatography. In this study, a handy ballpoint connector (between ballpoint tip and ink chamber) was used as extraction device, in which its cavity was filled with n‐octanol, and the bare n‐octanol in its two opening ends was covered with a thin layer of sodium chloride film. The design subtly assembled salt film onto ballpoint connector for extraction and enrichment, which greatly improved the enrichment factors of the target analytes. Moreover, the novel procedure and its extraction mechanism were described and analyzed, and several crucial parameters reflecting the extraction effect were investigated and optimized. Under optimum conditions, high enrichment factors (247 and 127), good linearities with ≥ 0.9998, limits of detection (0.6–1.1 ng/mL), relative standard deviations of intra‐ and interday (2.2–8.8% and 4.3–8.9%), and average recoveries (97.6–98.1%), were obtained, respectively. The proposed method can not only eliminate the negative effects from viscosity and ion strength at high salt concentration of sample phase, but also make salting‐out effect be focused on small area so as to maximize the extraction effect.  相似文献   

18.
Solid‐phase extraction coupled with dispersive liquid–liquid microextraction was developed as an ultra‐preconcentration method for the determination of four organophosphorus pesticides (isocarbophos, parathion‐methyl, triazophos and fenitrothion) in water samples. The analytes considered in this study were rapidly extracted and concentrated from large volumes of aqueous solutions (100 mL) by solid‐phase extraction coupled with dispersive liquid–liquid microextraction and then analyzed using high performance liquid chromatography. Experimental variables including type and volume of elution solvent, volume and flow rate of sample solution, salt concentration, type and volume of extraction solvent and sample solution pH were investigated for the solid‐phase extraction coupled with dispersive liquid–liquid microextraction with these analytes, and the best results were obtained using methanol as eluent and ethylene chloride as extraction solvent. Under the optimal conditions, an exhaustive extraction for four analytes (recoveries >86.9%) and high enrichment factors were attained. The limits of detection were between 0.021 and 0.15 μg/L. The relative standard deviations for 0.5 μg/L of the pesticides in water were in the range of 1.9–6.8% (n = 5). The proposed strategy offered the advantages of simple operation, high enrichment factor and sensitivity and was successfully applied to the determination of four organophosphorus pesticides in water samples.  相似文献   

19.
Silk fibers were carbonized to develop a biomass carbon material as an adsorbent for solid‐phase microextraction. The surface structure of the carbonized silk fibers was characterized by scanning electron microscopy, and the graphitization degree was determined by Raman spectrometry. After carbonization under high temperature, the orderliness and structural regularity of carbon atoms on silk fibers were promoted. Extraction tube packed with carbonized silk fibers was prepared for in‐tube solid‐phase microextraction. Coupled with high performance liquid chromatography, it exhibited good extraction performance for hydrophobic polycyclic aromatic hydrocarbons. Main parameters including sampling volume, sampling rate, methanol content in sample, and desorption time were systematically investigated. Under the optimum conditions, the analysis method was established and it exhibited wide linear range (0.016–20 μg/L) with good linearity (correlation coefficient ≥ 0.9947), low limits of detection (0.005–0.050 μg/L), and high enrichment factors (1189–2775). Relative standard deviations (n = 3) for intraday (≤3.3%) and interday (≤9.6%) tests indicated that the extraction material had satisfactory repeatability. Finally, the analytical method was successfully applied to detect trace polycyclic aromatic hydrocarbons in real water samples, demonstrating its satisfactory practicability.  相似文献   

20.
Triazine‐based organic polymers@SiO2 nanospheres were prepared and applied as an extraction coating onto stainless steel wires and the wires were filled into polyetheretherketone tube for in‐tube solid‐phase microextraction. Taking polycyclic aromatic hydrocarbons as targets, main factors affecting extraction performance of the tube were investigated through coupling to high performance liquid chromatography. Under the optimum conditions, an online analytical method for polycyclic aromatic hydrocarbons was established with large linear ranges (0.010‐20 µg/L), low limits of detection (0.003‐0.010 µg/L), high enrichment factors (533‐2954), and good repeatability (relative standard deviations <1.7% for intraday test, <5.0% for interday test). The analysis method was successfully applied to the detection of trace targets in real water samples and the relative recoveries ranged from 82.9 to 119.9%, which demonstrated the applicability of extraction tube in sample preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号