首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Molecular dynamics simulations are used to study highly cross‐linked epoxy networks comprised of furanyl epoxy monomer, 2,5‐bis[(2‐oxiranylmethoxy)methyl]‐furan (BOF), that is cross‐linked by two furanyl amine hardeners, 5,5'‐methylenedifurfurylamine (DFDA) and 5,5'‐ethylidenedifurfirylamine (CH3‐DFDA). Important properties of these fully furan‐based systems, including room temperature density, glass transition temperature, and Young's modulus are found to agree with previous experimental results. We also compare the simulated and experimental values of four fully furan‐based thermosetting materials to those using the conventional resin diglycidyl ether of bisphenol A (DGEBA) cured with the two furanyl hardeners. Our simulation results predict a slight decrease in density and Young's modulus, but no impact on the glass transition temperature, upon adding the methyl group in DFDA. Detailed analyses of the MD trajectories reveal the underlying mechanisms responsible for the observed structure/property relations, which center on the lack of collinear covalent bonds in the BOF molecular structure. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 285–292  相似文献   

2.
Amphiphilic block copolymers provide a unique means for toughening epoxy resins because they can self‐assemble into different inclusion shapes before epoxy curing. The two examples reported here are spherical micelles and vesicles, which form in blends containing epoxy and symmetric or asymmetric poly(ethylene oxide)–poly(ethylene‐alt‐propylene) (PEO–PEP) block copolymer with PEO volume fractions of 0.5 and 0.26, respectively. The vesicles and spherical micelles were characterized by transmission electron microscopy and small‐angle X‐ray scattering (SAXS), respectively. SAXS data from the spherical micelles were fit to the Percus–Yevick model for a liquid‐like packing of spheres with hard‐core interactions. Mechanical properties of spherical‐micelle‐modified and vesicle‐modified epoxies in the dilute limit are compared. The glass‐transition temperature and Young's (storage) modulus were tested with dynamic mechanical spectroscopy, and compact‐tension experiments were performed to determine the critical plane‐strain energy release rate for fracture. Vesicles were most effective in improving the epoxy fracture resistance. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2996–3010, 2001  相似文献   

3.
A study of the mechanical properties of poly(ferrocenyldimethylsilane) [Fe(η‐C5H4)2SiMe2]n, 3 , a novel organometallic polymer, has been performed on thin films of this material. The Young's modulus and Poisson's ratio of film samples (15 × 1 × 1 mm) of 3 were measured in quasi‐static tension using a video extensometer. For 3 , the values of the Young's moduli (E) and Poisson's ratios (ν) were similar between axes in the plane and independent of the splicing direction used during sample preparation. The mean and standard deviation of the Young's modulus and Poisson's ratio were 0.78 ± 0.08 GPa and 0.37 ± 0.06 GPa, respectively. Thermomechanical analysis of 3 revealed a steady decrease of E from a room temperature value of approximately 0.70 GPa. Additionally, it was found that at 150 °C, 3 was unable to support even small stresses, consistent with the onset of a melt transition (ca. 135 °C). A mathematical model based on molecular geometry is developed to describe the results. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2280–2288, 2005  相似文献   

4.
Nylon‐6,6 nanofibers were electrospun at an elongation rate of the order of 1000 s?1 and a cross‐sectional area reduction of the order of 0.33 × 105. The influence of these process peculiarities on the intrinsic structure and mechanical properties of the electrospun nanofibers is studied in the present work. Individual electrospun nanofibers with an average diameter of 550 nm were collected at take‐up velocities of 5 and 20 m/s and subsequently tested to assess their overall stress–strain characteristics; the testing included an evaluation of Young's modulus and the nanofibers' mechanical strength. The results for the as‐spun nanofibers were compared to the stress–strain characteristics of the melt‐extruded microfibers, which underwent postprocessing. For the nanofibers that were collected at 5 m/s the average elongation‐at‐break was 66%, the mechanical strength was 110 MPa, and Young's modulus was 453 MPa, for take‐up velocity of 20 m/s—61%, 150 and 950 MPa, respectively. The nanofibers displayed α‐crystalline phase (with triclinic cell structure). © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1482–1489, 2006  相似文献   

5.
The interphase layer in semi‐crystalline polyethylene is the least known constituent, compared to the amorphous and crystalline phases, in terms of mechanical properties. In this study, the Monte Carlo molecular simulation results for the interlamellar domain (i.e. amorphous+ interphases), reported in (Macromolecules 2006, 39, 439–447) are employed. The amorphous elastic properties are adopted from the literature and then two distinct micromechanical homogenization approaches are utilized to dissociate the interphase stiffness from that of the interlamellar region. The results of the two micromechanical approaches match perfectly. Interestingly, the dissociated interphase stiffness lacks the common feature of positive definiteness, which is attributed to its nature as a transitional domain between two coexisting phases. The sensitivity analyses reveal that this property is insensitive to the non‐orthotropic components of the interlamellar stiffness and the uncertainties existing in the interlamellar and amorphous stiffnesses. Finally, using the dissociated interphase stiffness, its effective Young's modulus is calculated, which compares well with the effective interlamellar Young's modulus for highly crystalline polyethylene, reported in an experimental study. This satisfactory agreement along with the identical results produced by the two micromechanical approaches confirms the validity of the new information about the interphase elastic properties in addition to making the proposed dissociation methodology quite reliable when applied to similar problems. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1228–1243  相似文献   

6.
Design and application of mechanically extraordinary nanofibers requires their full comprehension, based on conclusive testing methods. Electrospun polymer nanofibers, for instance, show a progressive and pronounced increase in their Young's moduli when diameters decrease below the µm scale. Measurement of mechanical properties in this diameter range is challenging and in the vast majority of reports, two classes of methods are commonly used: highly sensitive tensile testing and atomic force microscopy three‐point deformation testing. Despite the methods' inherent dissimilarity, we resolve their conformity for the first time, with respect to the determination of Young's moduli. Here, we benchmark them against each other for electrospun polyvinyl‐alcohol nanofibers, a well‐defined model system. Our results provide an experimental basis for a comprehensive understanding of nanofiber structures and its implications on their mechanical properties. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2418–2424  相似文献   

7.
Furan‐2,5‐dicarboxylic acid (FDCA) is a widely advocated renewable substitute for terephthalic acid (TA). Preparation of high molecular weight FDCA based polyesters by an industrially common combination of melt polymerization and subsequent solid state post condensation is described. Ultimately, poly(ethylene 2,5‐furanoate) (PEF) with absolute Mn = 83,000 g mol?1 is obtained, determined by triple detection Size Exclusion Chromatography. The bulk polymer properties of FDCA based polyesters, necessary to evaluate their industrial potential were determined the Young's modulus of PEF is determined to be 2450 ± 220 MPa and the maximum stress 35 ± 8 MPa. The influence of crystallinity on the mechanical properties as function of temperature was determined by dynamic mechanical thermal analysis. A detailed differential scanning calorimetry study on the crystallization behavior of high molecular weight PEF allowed to calculate the equilibrium melting temperature (Tm0) of 239.3 and 239.7 °C for the first and second melting peak, respectively. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4191–4199  相似文献   

8.
Water‐swellable biodegradable materials exhibiting mechanically tenacious and tough characters in the wet state were prepared by a simple blend of two enantiomeric polylactide‐grafted dextran copolymers (Dex‐g‐PLLA and Dex‐g‐PDLA). DSC and WAXD analyses demonstrated the formation of SC crystals in the copolymer blend films. SC blend films showed lamellar‐type microphase‐separated structures. When swollen with water, these blend films showed the same level of tensile strengths and Young's modulus as the films in the dry state. SC blend films degraded gradually over a month under physiological conditions with a degradation rate faster than the corresponding Dex‐g‐PLLA films. The SC‐forming enantiomeric mixture of polylactide‐grafted polysaccharides should be a good candidate for an implantable biocompatible material exhibiting favorable mechanical properties and degradation behavior. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
In this article, the Young's modulus and the loss tangent of polydimethylsiloxane (PDMS) is obtained in the frequency range between 10 and 1500 Hz using an optical technique. The first three mechanical modes of vibrating PDMS beams are detected by measuring the tip rotational displacement using an optical lever. The experiments are carried out for 10:1 and 20:1 volume mixing ratios between the polymer base and the curing agent. The experimental results show that the Young's modulus varies between 1 and 2.6 MPa for 10:1 while its values are between 0.6 and 1.1 MPa for 20:1. The loss tangent is between 0.2 and 0.4 for 10:1 and 0.2 and 0.5 for 20:1. However, the measured values of the loss tangent are greater than the values reported in ref. 13. We also found that if the PDMS is not cured properly, its mechanical properties are time dependent. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 747–751  相似文献   

10.
The zone‐drawing (ZD) method was applied three times to the melt‐spun poly(L ‐lactic acid) (PLLA) fibers of low molecular weight (Mv = 13,100) at different temperatures under various tensions. The mechanical properties and superstructure of the ZD fibers were investigated. The resulting ZD‐3 fiber had a draw ratio of 10.5, birefringence of 37.31 × 10−3, and crystallinity of 37%, while an orientation factor of crystallites remarkably increased to 0.985 by the ZD‐1. The Young's modulus and tensile strength of the ZD‐3 fiber respectively attained 9.1 GPa and 275 MPa, and the dynamic storage modulus was 10.4 GPa at room temperature. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 991–996, 1999  相似文献   

11.
Most of the research efforts on Nafion have been devoted to the study of the perfluorinated ionomer membranes at optimal conditions for the desired applications, such as high temperature and low relative humidity for polymer electrolyte membrane fuel cells (PEM FC). In view of the possible changes induced by the freezing of water in the structure of Nafion and considering that in cold start conditions of a PEM FC device, Nafion needs to work also below 273 K, we measured the Young's modulus (Y) and the elastic energy dissipation (tan δ) in the temperature range between 90 and 470 K and the stress–strain curves between 300 and 173 K. The measurements reported here indicate that the mechanical properties of wet Nafion membrane change dramatically with temperature, that is, from a rubber‐like behavior at room temperature to a brittle behavior below 180 K. Moreover, we observed that the freezing of the nanoconfined water is complete only below 180 K, as indicated by a large increase of the Young's modulus. Between 180 and 300 K, the large values of tan δ suggest the occurrence of friction between the liquid water bound to the walls of the hydrophilic domains and the solid ice residing in the center of channels. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

12.
Nanoindentation is a widely used technique to characterize the mechanical properties of polymeric materials at the nanoscale. Extreme surface stiffening has been reported for soft polymers such as poly(dimethylsiloxane) (PDMS) rubber. Our recent work [J. Polym. Sci. Part B Polym. Phys. 2017 , 55, 30–38] provided a quantitative model which demonstrates such extreme stiffening can be associated with experimental artifacts, for example, error in surface detection. In this work, we have further investigated the effect of surface detection error on the determination of mechanical properties by varying the sample modulus, instrument surface detection criterion, and probe geometry. We have examined materials having Young's moduli from ∼2 MPa (PDMS) to 3 GPa (polystyrene) using two different nanoindentation instruments (G200 and TI 950) which implement different surface detection methods. The results show that surface detection error can lead to apparent large stiffening. The errors are lower for the stiffer materials, but can still be significant if care is not taken to establish the range of the surface detection error in a particular experimental situation. We have also examined the effect of pressure beneath the probe on the nanoindentation‐determined modulus of polystyrene with different probe geometries. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 414–428  相似文献   

13.
A simple pressure‐sensitive adhesion (PSA) system incorporating noncovalent interaction between thymine and adenine is presented. A copolymer having thymine moieties is combined with a low‐molecular‐weight bifunctional adenine cross‐linker. Molecular interactions caused by multiple hydrogen bonds between the thymine and adenine units are evaluated by FT‐IR spectral measurement. Mechanical properties of the PSA are examined by stress–strain curves and dynamic mechanical analysis. As the number of adenine cross‐linkers increases, Young's modulus increases from 0.24 to 3.0 MPa, and the glass transition temperature increases. Furthermore, it is found that the PSAs have adequate adhesive property from their shear strength test. Heat treatment at 80 °C is effective for reinforcement because of interchange of the hydrogen bonds. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1332‐1338  相似文献   

14.
Stress–strain and microhardness measurements were carried out on a series of copolymers of ethylene and 1‐octadecene with different comonomer contents in the corresponding homopolymer of ethylene, synthesized with a metallocene catalyst. The different mechanical properties, deduced from the stress–strain curves (Young's modulus, yield stress, deformation at break, and energy to break) are interpreted in terms of the crystallinity and molecular weight of the samples because these two characteristics show considerable variations with the comonomer content. The microhardness values are explained in terms of these properties, and they are also correlated with Young's moduli and yield stresses deduced from the stress–strain curves. Linear relations are found between microhardness and yield stress and between the logarithm of the microhardness and the logarithm of the elastic modulus. The properties deduced from these lines are compared with literature values. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 277–285, 2001  相似文献   

15.
Colloidal silica nanoparticles (NPs) modified with eight different silane coupling agents were incorporated into an amorphous poly(tetramethylene oxide)‐based polyurethane–urea copolymer matrix at a concentration of 10 wt % (4.4 vol %) in order to investigate the effect of their surface chemistry on the structure–property behavior of the resulting nanocomposites. The rigid amorphous fraction (RAF) of the nanocomposite matrix as determined by differential scanning calorimetry and dynamic mechanical analysis was confirmed to vary significantly with the surface chemistry of the NPs and to be strongly correlated with the bulk mechanical properties in simple tension. Hence, nanocomposites with an RAF of about 30 wt % showed a 120% increase in Young's modulus, a 25% increase in tensile strength, a 15% decrease in elongation at break with respect to the neat matrix, which had no detectable RAF, whereas nanocomposites with an RAF of less than 5% showed a 60% increase in Young's modulus, a 10% increase in tensile strength and a 5% decrease in the elongation at break. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2543–2556  相似文献   

16.
It is understood that the ballistic resistance of aromatic polyamide fibers is related to the fiber's ultimate tensile strength, strain‐to‐failure, and Young's modulus. Ideal high‐performance ballistic materials maximize these properties while minimizing material density. Equally important is long‐term mechanical and chemical stability: the fibers should not exhibit performance loss over their lifetime. However, less is known quantitatively about their modes of degradation, and experimental methods to quantify the aging and degradation in these fibers are critical. Multiple variations of next generation high‐performance fibers have been investigated under chemical and mechanical accelerated aging conditions. Performance losses have been empirically correlated to chemical degradation of the polymer chain and nanostructural changes in the fiber morphology through X‐ray photoelectron spectroscopy (XPS). Here, we introduce positron annihilation lifetime spectroscopy measurements as a sensitive method to quantify the early onset of damage in the flexed fibers as quantified through changes in the nanoscale void structure in the material. Published 2017.? J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 1711–1717  相似文献   

17.
trans‐1,4‐Cyclohexylene ring containing acid chloride monomers were incorporated into poly(arylene ether sulfone) (PAES) backbones to study their effect on mechanical and thermal properties. The trans‐1,4‐cyclohexylene ring containing acid chloride monomers were synthesized and characterized by NMR and high‐resolution mass spectrum. trans‐1,4‐Cyclohexylene containing PAESs were synthesized from the acid chloride monomers and hydroxyl terminated polysulfone oligomers with a pseudo‐interfacial method and a solution method. These PAESs, with trans‐1,4‐cyclohexylene ring containing ester linkages, were fully characterized by NMR, thermogravimetric analysis, differential scanning calorimetry (DSC), size exclusion chromatography, and dynamic mechanical analysis (DMA). The tensile properties were also evaluated. The polymers made with the pseudo‐interfacial method had relatively low molecular weights when compared to the solution method where much higher molecular weight polymers were obtained. Crystallinity was promoted in the low molecular weight biphenol‐based PAES samples with the pseudo‐interfacial method. The crystallinity was confirmed by both the DSC and the wide angle X‐ray diffraction results. The tensile test results of the high molecular weight polymers suggested that incorporation of the trans‐1,4‐cyclohexylene ring containing linkage slightly improved the ultimate elongations while maintaining the Young's moduli. The trans‐1,4‐cyclohexylene ring containing PAESs also showed higher sub‐Tg relaxations in DMA when compared with their terephthaloyl containing analog. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
Polymerization of multifunctional acrylate monomers generates crosslinked polymers that are noted for their mechanical strength, thermal stability, and chemical resistance. A common reactive diluent to photopolymerizable formulations is N‐vinyl pyrrolidone (NVP), which is known to reduce the inhibition of free radical photopolymerization by atmospheric oxygen. In this work, the copolymerization behavior of NVP was examined in acrylate monomers with two to five functional groups. At concentrations as low as 2 wt %, NVP increases the polymerization rate in copolymerization with multifunctional acrylate monomer. The relative rate enhancement associated with adding NVP increases dramatically as the number of acrylate double bonds changes from two to five. The influence of NVP on polymerization kinetics is related to synergistic cross‐propagation between NVP and acrylate monomer, which becomes increasingly favorable with diffusion limitations. This synergy extends bimolecular termination into higher double bond conversion through reaction diffusion controlled termination. Copolymerizing concentrations of 5–30 DB% NVP with diacrylate or pentaacrylate monomer also increases Young's modulus and the glass transition temperature (Tg) in comparison to neat acrylate polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4062–4073, 2007  相似文献   

19.
In situ measurement techniques suitable for determination of the coefficient of thermal expansion (CTE) in thin, spin‐cast polymer films in both the in‐plane and through‐plane directions are presented. An examination of the thermal expansion behavior of cyclotene thin films has been performed. In particular, the effect of film thickness on the in‐plane and through‐plane CTE and in‐plane Young's modulus of spin‐coated cyclotene films was examined. It is shown that the mechanical response of in situ cyclotene films can be adequately described by isotropic film properties. It was also demonstrated that there is no thickness dependence on the free‐standing mechanical properties or on the resulting through‐plane thermal strain in an in situ film. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 311–321, 1999  相似文献   

20.
A series of hydrogels from 2‐ethyl‐2‐oxazoline and three bis(2‐oxazoline) crosslinkers—1,4‐butylene‐2,2′‐bis(2‐oxazoline), 1,6‐hexamethylene‐2,2′‐bis(2‐oxazoline), and 1,8‐octamethylene‐2,2′‐bis(2‐oxazoline)—are prepared. The hydrogels differ by the length of aliphatic chain of crosslinker and by the percentage of crosslinker (2–10%). The influence of the type and the percentage of the crosslinker on swelling properties, mechanical properties, and state of water is studied. The equilibrium swelling degree in water ranges from 2 to 20. With a proper selection of the crosslinker, Young's modulus can be varied from 10 kPa to almost 100 kPa. To evaluate the potential for medical applications, the cytotoxicity of extracts and the contact toxicity toward murine fibroblasts are measured. The hydrogels with the crosslinker containing a shorter aliphatic exhibit low toxicity toward fibroblast cells. Moreover, the viability and the proliferation of pancreatic β‐cells incubated inside hydrogels for 12 days are analyzed. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1548–1559  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号