共查询到5条相似文献,搜索用时 3 毫秒
1.
Gd(OH)3 nanobundles, which consisted of bundle-like nanorods, have been prepared through a simple and facile hydrothermal method. The crystal, purity, morphology and structural features of Gd(OH)3 nanobundles are investigated by powder X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and energy dispersive X-ray (EDX). A possible formation mechanism of Gd(OH)3 nanobundles is briefly discussed. 相似文献
2.
分别采用514 nm绿光、488 nm蓝光和390 nm紫外光作为敏化光,633 nm红光作为记录光,详细研究了敏化光波长对氧化(Fe,Ni):LiNbO3晶体全息记录性能的影响.结果表明:随着敏化光波长的逐渐减小,氧化(Fe,Ni):LiNbO3晶体的非挥发全息记录性能逐渐优化,390 nm紫外光是这三种敏化光中最优的敏化光.考虑敏化光的吸收,为了在双中心全息记录中获得最优的性能,应当选择合适波长的敏化光:一方面短波长敏化光能有效地敏化深中心;另一方面短波长敏化光的吸收太强(如对光折变效应无用的基质吸收),不能沿厚度方向有效地敏化晶体,所以实际上需折衷考虑,并从理论上给予了解释. 相似文献
3.
Lihui SunJifan Hu Feng GaoYongjia Zhang Hongwei Qin 《Physica B: Condensed Matter》2011,406(21):4105-4108
The adsorption of NO molecule on the LaFeO3 (0 1 0) surface was studied using first-principle calculations based on density functional theory. The calculated results indicate that the Fe-top site is the most favorable for NO adsorption. The N-O bond length, Mulliken charge, and the N-O vibration frequency of the NO molecule are discussed after adsorption. The analysis results of the density of the states show that when NO is adsorbed with the Fe-NO configuration, the bonding mechanism is mainly from the interaction between the NO and the Fe d orbit. 相似文献
4.
Facile Synthesis of Gd(OH)3‐Doped Fe3O4 Nanoparticles for Dual‐Mode T1‐ and T2‐Weighted Magnetic Resonance Imaging Applications 下载免费PDF全文
Hongdong Cai Xiao An Shihui Wen Jingchao Li Guixiang Zhang Xiangyang Shi Mingwu Shen 《Particle & Particle Systems Characterization》2015,32(10):934-943
The facile hydrothermal synthesis of polyethyleneimine (PEI)‐coated iron oxide (Fe3O4) nanoparticles (NPs) doped with Gd(OH)3 (Fe3O4‐Gd(OH)3‐PEI NPs) for dual mode T1‐ and T2‐weighted magnetic resonance (MR) imaging applications is reported. In this approach, Fe3O4‐Gd(OH)3‐PEI NPs are synthesized via a hydrothermal method in the presence of branched PEI and Gd(III) ions. The PEI coating onto the particle surfaces enables further modification of poly(ethylene glycol) (PEG) in order to render the particles with good water dispersibility and improved biocompatibility. The formed Fe3O4‐Gd(OH)3‐PEI‐PEG NPs have a Gd/Fe molar ratio of 0.25:1 and a mean particle size of 14.4 nm and display a relatively high r2 (151.37 × 10?3m ?1 s?1) and r1 (5.63 × 10?3m ?1 s?1) relaxivity, affording their uses as a unique contrast agent for T1‐ and T2‐weighted MR imaging of rat livers after mesenteric vein injection of the particles and the mouse liver after intravenous injection of the particles, respectively. The developed Fe3O4‐Gd(OH)3‐PEI‐PEG NPs may hold great promise to be used as a contrast agent for dual mode T1‐ and T2‐weighted self‐confirmation MR imaging of different biological systems. 相似文献
5.
Iron Oxide Nanoparticles: Facile Synthesis of Gd(OH)3‐Doped Fe3O4 Nanoparticles for Dual‐Mode T1‐ and T2‐Weighted Magnetic Resonance Imaging Applications (Part. Part. Syst. Charact. 10/2015) 下载免费PDF全文
Hongdong Cai Xiao An Shihui Wen Jingchao Li Guixiang Zhang Xiangyang Shi Mingwu Shen 《Particle & Particle Systems Characterization》2015,32(10):918-918