首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we develop a new discontinuous Galerkin (DG) finite element method for solving time dependent partial differential equations (PDEs) with higher order spatial derivatives. Unlike the traditional local discontinuous Galerkin (LDG) method, the method in this paper can be applied without introducing any auxiliary variables or rewriting the original equation into a larger system. Stability is ensured by a careful choice of interface numerical fluxes. The method can be designed for quite general nonlinear PDEs and we prove stability and give error estimates for a few representative classes of PDEs up to fifth order. Numerical examples show that our scheme attains the optimal -th order of accuracy when using piecewise -th degree polynomials, under the condition that is greater than or equal to the order of the equation.

  相似文献   


2.
This paper is devoted to a newly developed weak Galerkin finite element method with the stabilization term for a linear fourth order parabolic equation, where weakly defined Laplacian operator over discontinuous functions is introduced. Priori estimates are developed and analyzed in L2 and an H2 type norm for both semi‐discrete and fully discrete schemes. And finally, numerical examples are provided to confirm the theoretical results.  相似文献   

3.
In this paper, we consider a least-squares method proposed by Bramble, Lazarov and Pasciak (1998) which can be thought of as a stabilized Galerkin method for noncoercive problems with unique solutions. We modify their method by weakening the strength of the stabilization terms and present various new error estimates. The modified method has all the desirable properties of the original method; indeed, we shall show some theoretical properties that are not known for the original method. At the same time, our numerical experiments show an improvement of the method due to the modification.

  相似文献   


4.
We study a second order hyperbolic initial‐boundary value partial differential equation (PDE) with memory that results in an integro‐differential equation with a convolution kernel. The kernel is assumed to be either smooth or no worse than weakly singular, that arise for example, in linear and fractional order viscoelasticity. Existence and uniqueness of the spatial local and global Galerkin approximation of the problem is proved by means of Picard's iteration. Then, spatial finite element approximation of the problem is formulated, and optimal order a priori estimates are proved by the energy method. The required regularity of the solution, for the optimal order of convergence, is the same as minimum regularity of the solution for second order hyperbolic PDEs. Spatial rate of convergence of the finite element approximation is illustrated by a numerical example. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 548–563, 2016  相似文献   

5.
The local discontinuous Galerkin method has been developed recently by Cockburn and Shu for convection‐dominated convection‐diffusion equations. In this article, we consider versions of this method with interior penalties for the numerical solution of transport equations, and derive a priori error estimates. We consider two interior penalty methods, one that penalizes jumps in the solution across interelement boundaries, and another that also penalizes jumps in the diffusive flux across such boundaries. For the first penalty method, we demonstrate convergence of order k in the L(L2) norm when polynomials of minimal degree k are used, and for the second penalty method, we demonstrate convergence of order k+1/2. Through a parabolic lift argument, we show improved convergence of order k+1/2 (k+1) in the L2(L2) norm for the first penalty method with a penalty parameter of order one (h?1). © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17: 545–564, 2001  相似文献   

6.
This article discusses a priori and a posteriori error estimates of discontinuous Galerkin finite element method for optimal control problem governed by the transport equation. We use variational discretization concept to discretize the control variable and discontinuous piecewise linear finite elements to approximate the state and costate variable. Based on the error estimates of discontinuous Galerkin finite element method for the transport equation, we get a priori and a posteriori error estimates for the transport equation optimal control problem. Finally, two numerical experiments are carried out to confirm the theoretical analysis.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1493–1512, 2017  相似文献   

7.
In this article, we apply a modified weak Galerkin method to solve variational inequality of the first kind which includes Signorini and obstacle problems. Optimal order a priori error estimates in the energy norm are derived. We also provide some numerical experiments to validate the theoretical results.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1459–1474, 2017  相似文献   

8.
In this article, we discuss the numerical solution for the two-dimensional (2-D) damped sine-Gordon equation by using a space–time continuous Galerkin method. This method allows variable time steps and space mesh structures and its discrete scheme has good stability which are necessary for adaptive computations on unstructured grids. Meanwhile, it can easily get the higher-order accuracy in both space and time directions. The existence and uniqueness to the numerical solution are strictly proved and a priori error estimate in maximum-norm is given without any space–time grid conditions attached. Also, we prove that if the mesh in each time level is generated in a reasonable way, we can get the optimal order of convergence in both temporal and spatial variables. Finally, the convergence rates are presented and analyzed by some numerical experiments to illustrate the validity of the scheme.  相似文献   

9.
In this paper, we consider a class of parabolic partial differential equations with a time delay. The first model equation is the mixed problems for scalar generalized diffusion equation with a delay, whereas the second model equation is a delayed reaction‐diffusion equation. Both of these models have inherent complex nature because of which their analytical solutions are hardly obtainable, and therefore, one has to seek numerical treatments for their approximate solutions. To this end, we develop a fitted Galerkin spectral method for solving this problem. We derive optimal error estimates based on weak formulations for the fully discrete problems. Some numerical experiments are also provided at the end. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
In this article the ideas in Wang et al. [SIAM J Numec Anal 48 (2010), 708–73] are extended to solve the double obstacle problem using discontinuous Galerkin methods. A priori error estimates are established for these methods, which reach optimal order for linear elements. We present a test example, and the numerical results on the convergence order match the theoretical prediction. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

11.
** Email: paul.houston{at}nottingham.ac.uk*** Corresponding author. Email: ilaria.perugia{at}unipv.it**** Email: schoetzau{at}math.ubc.ca We introduce a residual-based a posteriori error indicator fordiscontinuous Galerkin discretizations of H(curl; )-ellipticboundary value problems that arise in eddy current models. Weshow that the indicator is both reliable and efficient withrespect to the approximation error measured in terms of a naturalenergy norm. We validate the performance of the indicator withinan adaptive mesh refinement procedure and show its asymptoticexactness for a range of test problems.  相似文献   

12.
We consider the usual linear elastodynamics equations augmented with evolution equations for viscoelastic internal stresses. A fully discrete approximation is defined, based on a spatially symmetric or non‐symmetric interior penalty discontinuous Galerkin finite element method, and a displacement‐velocity centred difference time discretisation. An a priori error estimate is given but only the main ideas in the proof of the error estimate are reported here due to the large number of (mostly technical) estimates that are required. The full details are referenced to a technical report. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

13.
This article proposes and analyzes a C0‐weak Galerkin (WG) finite element method for solving the biharmonic equation in two‐dimensional and three‐dimensional. The new WG method uses continuous piecewise‐polynomial approximations of degree for the unknown u and discontinuous piecewise‐polynomial approximations of degree k for the trace of on the interelement boundaries. Optimal error estimates are obtained in H2, H1, and L2 norms. Numerical experiments illustrate and confirm the theoretical results. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1090–1104, 2016  相似文献   

14.
We study a discontinuous Galerkin finite element method (DGFEM) for the Stokes equations with a weak stabilization of the viscous term. We prove that, as the stabilization parameter γ tends to infinity, the solution converges at speed γ?1 to the solution of some stable and well‐known nonconforming finite element methods (NCFEM) for the Stokes equations. In addition, we show that an a posteriori error estimator for the DGFEM‐solution based on the reconstruction of a locally conservative H(div, Ω)‐tensor tends at the same speed to a classical a posteriori error estimator for the NCFEM‐solution. These results can be used to affirm the robustness of the DGFEM‐method and also underline the close relationship between the two approaches. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

15.
A semidiscretization based method for solving Hamiltonian partial differential equations is proposed in this article. Our key idea consists of two approaches. First, the underlying equation is discretized in space via a selected finite element method and the Hamiltonian PDE can thus be casted to Hamiltonian ODEs based on the weak formulation of the system. Second, the resulting ordinary differential system is solved by an energy‐preserving integrator. The relay leads to a fully discretized and energy‐preserved scheme. This strategy is fully realized for solving a nonlinear Schrödinger equation through a combination of the Galerkin discretization in space and a Crank–Nicolson scheme in time. The order of convergence of our new method is if the discrete L2‐norm is employed. An error estimate is acquired and analyzed without grid ratio restrictions. Numerical examples are given to further illustrate the conservation and convergence of the energy‐preserving scheme constructed.© 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1485–1504, 2016  相似文献   

16.
This article investigates the property of linearly dependence of solutions f(z) and f(z 2πi)for higher order linear differential equations with entire periodic coefficients.  相似文献   

17.
Highlights are the following:
  • For any integer , we construct ‐continuous partition of unity (PU) functions with flat‐top from B‐spline functions to have numerical solutions of fourth‐order equations with singularities. B‐spline functions are modified to satisfy clamped boundary conditions.
  • To handle singularity arising in fourth‐order elliptic differential equations, these modified B‐spline functions are enriched either by introducing enrichment basis functions implicitly through particular geometric mappings or by adding singular basis functions explicitly.
  • To show the effectiveness of the proposed implicit enrichment methods (mapping method), the accuracy, the number of degrees of freedom (DOF), and matrix condition numbers are computed and compared in the h‐refinement, the p‐refinement, and the k‐refinement of the approximation space of B‐spline basis functions.
Using Partition of unity (PU) functions with flat‐top, B‐spline functions are modified to satisfy boundary conditions of the fourth‐order equations. Since the standard isogeometric analysis (IGA) as well as the conventional FEM have limitations in handling fourth‐order differential equations containing singularities, we consider two enrichment methods (explicit and implicit) in the framework of the p‐, the k, and the h‐refinements of IGA. We demonstrate that both enrichment methods yield good approximate solutions, but explicit enrichment methods give large (almost singular) matrix condition numbers and face integrating singular functions. Because of these limitations of external enrichment methods, we extensively investigate implicit enrichment methods (mapping methods) that virtually convert fourth‐order elliptic problems with singularities to problems with no influence of the singularities. Effectiveness of the proposed mapping method extensively tested to one‐dimensional fourth‐order equation with singularities. The implicit enrichment (mapping) method is extended to the two‐dimensional cases and test it to fourth‐order partial differential equations on cracked domains.  相似文献   

18.
We consider the Cauchy problem in a Hilbert space for a second-order abstract quasilinear hyperbolic equation with variable operator coefficients and nonsmooth (but Bochner integrable) free term. For this problem, we establish an a priori energy error estimate for the semidiscrete Galerkin method with an arbitrary choice of projection subspaces. Also, we establish some results on existence and uniqueness of an exact weak solution. We give an explicit error estimate for the finite element method and the Galerkin method in Mikhlin form.  相似文献   

19.
We consider Galerkin approximations for the equations modeling the motion of an incompressible magneto‐micropolar fluid in a bounded domain. We derive an optimal uniform in time error bound in the H1 and L2 ‐norms for the velocity. This is done without explicit assumption of exponential stability for a class of solutions corresponding to decaying external force fields. Our study is done for no‐slip boundary conditions, but the results obtained are easily extended to the case of periodic boundary conditions. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 689–706, 2012  相似文献   

20.
We develop the symmetric interior penalty discontinuous Galerkin (DG) method for the time-dependent Maxwell equations in second-order form. We derive optimal a priori error estimates in the energy norm for smooth solutions. We also consider the case of low-regularity solutions that have singularities in space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号